

3.1/15-348_V2

Valide du 16 juillet 2024

au 31 décembre 2028

Sur le procédé

Rupteurs Thermiques Schöck ISOKORB® en Isolation Thermique Extérieure (ITE) ou Répartie (ITR)

Famille de produit/Procédé : Rupteur de ponts thermiques structuraux en Isolation Thermique Extérieure (ITE)

Titulaire(s): Société SCHÖCK BAUTEILE GmbH

AVANT-PROPOS

Les avis techniques et les documents techniques d'application, désignés ci-après indifféremment par Avis Techniques, sont destinés à mettre à disposition des acteurs de la construction **des éléments d'appréciation sur l'aptitude à l'emploi des produits ou procédés** dont la constitution ou l'emploi ne relève pas des savoir-faire et pratiques traditionnels.

Le présent document qui en résulte doit être pris comme tel et n'est donc **pas un document de conformité ou à la réglementation ou à un référentiel d'une « marque de qualité »**. Sa validité est décidée indépendamment de celle des pièces justificatives du dossier technique (en particulier les éventuelles attestations réglementaires).

L'Avis Technique est une démarche volontaire du demandeur, qui ne change en rien la répartition des responsabilités des acteurs de la construction. Indépendamment de l'existence ou non de cet Avis Technique, pour chaque ouvrage, les acteurs doivent fournir ou demander, en fonction de leurs rôles, les justificatifs requis.

L'Avis Technique s'adressant à des acteurs réputés connaître les règles de l'art, il n'a pas vocation à contenir d'autres informations que celles relevant du caractère non traditionnel de la technique. Ainsi, pour les aspects du procédé conformes à des règles de l'art reconnues de mise en œuvre ou de dimensionnement, un renvoi à ces règles suffit.

Groupe Spécialisé nº 3.1 - Planchers et accessoires de plancher

Secrétariat : CSTB, 84 avenue Jean Jaurès, FR-77447 Marne la Vallée Cedex 2

Tél.: 01 64 68 82 82 - email: secretariat.at@cstb.fr

www.ccfat.fr

Versions du document

Version	Description	Rapporteur	Président
	Cette version, examinée le 15 mars 2023, annule et remplace l'Avis Technique 3.1/15-348_V1. Elle intègre les modifications suivantes :		
	Modification du nom commercial RUTHERMA® en ITE à ISOKORB®		
V2	 Conversion en Document Technique d'Application suite à la publication de l'ETE 17/0261 (07 septembre 2022) 	PRAT Etienne	BERNARDIN-EZRAN Roseline
	 Introduction de la gamme XT avec isolant d'épaisseur 12 cm 		
	 Mise à jour des performances mécaniques et thermiques des rupteurs visés 		
	Mise à jour de l'appréciation de laboratoire feu		
	Mise à jour de la hauteur des rupteurs		

Descripteur:

Les rupteurs thermiques SCHÖCKISOKORB® T/XTsont des composants structuraux destinés à assurer la continuité verticale et horizontale de l'isolation (quelle que soit son épaisseur) extérieure (ITE) et/ou répartie (ITR) des bâtiments, en évitant les ponts thermiques à la liaison entre les balcons / loggias et la façade ou les acrotères et la façade.

La gamme de rupteurs thermiques SCHÖCK ISOKORB® comporte les gammes suivantes :

- Gamme T : épaisseur isolant 80 mm
- Gamme XT : épaisseur isolant de 120 mm

Chaque gamme est déclinée dans les types présentés ci-dessous :

- Types K, K-O, K-U, C et D: pour les éléments en porte-à-faux (comme K-HV, K-BH, K-WO et K-WU).
- Types Q: pour les éléments sur appuis.
- Types ES (ESi), H: pour reprendre les efforts sismiques.
- Types A et F : pour les liaisons dalle/acrotère.
- Type O: pour les liaisons dalle/console de support de parement.
- **Type B**: pour les liaisons refend/poutre.
- **Type W**: pour les liaisons refend intérieur / mur extérieur.
- Types Z et ZS: isolant sans armatures traversantes. Il s'agit d'un modèle de compensation.

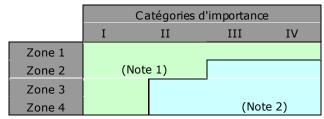
Les modèles de rupteurs ISOKORB® en ITE ont une longueur qui varie entre 250 mm (par ex. les modèles A, O et F) et 1000 mm. L'épaisseur de l'élément en béton extérieur réalisé est compris entre 16 cm à 50 cm d'épaisseur.

Ces rupteurs sont tenus d'assurer, en plus de la continuité de l'isolation, la liaison mécanique entre les éléments concernés dans la limite de leur capacité. Cette liaison est assurée en fonction des types par des armatures traversant l'isolant et ancrées de part et d'autre dans les éléments béton, associé ou non à des butons métalliques (SCE) ou des modules de compression « HTE » (CCE). Afin d'éviter leur corrosion, les parties d'armatures traversant l'isolant sont en acier inoxydable et les parties noyées dans le béton sont en acier noir pour béton armé, la jonction des deux types d'aciers est réalisée par fusion bout à bout.

Table des matières

1.	Avis du Groupe Spécialisé	Δ
1.1.	Domaine d'emploi accepté	
1.1.		
1.1.		
1.2.	Appréciation	
1.2.		
1.2.		
1.2.		
1.2.	·	
	Remarques complémentaires du Groupe Spécialisé	
1.3. 2.		
∠. 2.1.	Dossier Technique	
2.1.		
2.1.		
2.1.		
2.2.	Description	
2.2.		
2.2.	and the state of t	
2.2.	·	
2.3.	Dispositions de conception	
2.3.		
2.3.		
2.3.		
2.3.	, , , , , , , , , , , , , , , , , , , ,	
2.3.		
2.3.		
2.3.		
2.3.	, , , , , , , , , , , , , , , , , , , ,	
2.4.	Dispositions de mise en œuvre	
2.4.		
2.4.	2. Interface	28
2.4.	3. Prescriptions particulières de mise en œuvre du rupteur ISOKORB® dans des éléments coulés sur place	28
2.4.4 (dall	les, balcons, auvents, etc) et verticaux (murs, acrotères, etc)	31
2.4.	5. Autres utilisations	33
2.5.	Principes de fabrication et de contrôle	35
2.5.	1. Processus de fabrication	35
2.5.	2. Assurance qualité	35
2.6.	Livraison, stockage et traçabilité	35
2.7.	Commercialisation et assistante technique	35
2.7.	1. Commercialisation	35
2.7.	2. Identification	36
2.7.	3. Assistance technique	37
2.8.	Mention des justificatifs	37
2.8.	1. Résultats expérimentaux	37
2.8.	2. Références chantiers	39

1. Avis du Groupe Spécialisé


Le procédé décrit au chapitre 2 « Dossier Technique » ci-après a été examiné par le Groupe Spécialisé 3.1 « Planchers et accessoires de plancher » qui a conclu favorablement à son aptitude à l'emploi dans les conditions définies ci-après :

1.1. Domaine d'emploi accepté

1.1.1. Zone géographique

Ce Document Technique d'Application (DTA) est formulé pour des utilisations en France métropolitaine.

Le domaine d'emploi visé en ITE-ITR est formé pour l'ensemble des bâtiments, qu'ils requièrent ou non des dispositions parasismiques au sens de l'arrêté du 22 octobre 2010 :

- (Note 1) Ces cas ne requièrent pas de dispositions parasismiques. Ils sont dans le domaine d'emploi en ITE-ITR.
- (Note 2) Ces cas requièrent les dispositions parasismiques. Ils sont dans le domaine d'emploi en ITE-ITR.

Lorsque des dispositions parasismiques sont requises et dans le cadre d'une isolation thermique extérieure ou répartie, l'utilisation des rupteurs SCHÖCK ISOKORB®est possible en combinaison avec des « éléments sismiques » ou « module H / HP » dans les liaisons ne participant pas à la rigidité d'ensemble (au « monolithisme ») de la structure quel que soit le critère de régularité ou la hauteur du bâtiment. Pour les balcons en porte-à-faux pur, le rapport entre la longueur et le porte-à-faux ne devra pas être inférieur à 1,2.

1.1.2. Ouvrages visés

Le présent Avis ne vise que les rupteurs dont l'épaisseur d'isolant est égale à 8 ou 12 cm utilisés en Isolation Thermique par l'Extérieure ou Répartie.

L'utilisation du système de rupteurs ISOKORB®en ITE avec un autre système de rupteurs n'est pas visée par le présent document.

La destination en balcons, loggias et coursives sur espaces non-clos est visée par le présent document.

La destination en toiture-terrasse est visée par le présent DTA.

Les éléments extérieurs visés sont les suivants :

- Balcon/loggia/coursive/auvent coulé sur place.
- Balcon/loggia/coursive en dalle sur prédalle béton armé.
- Balcon/loggia/coursive en dalle sur prédalle précontrainte.

Les types de planchers intérieurs visés sont les suivants :

- Dalle pleine coulée sur place.
- Dalle sur prédalle béton armé.
- Dalle sur prédalle précontrainte.
- Dalle alvéolaire
- Poutrelles hourdis

Les façades peuvent être en béton armé (coulées sur place ou préfabriquées), en maçonnerie (petits éléments), ou encore en MCI ou MCII (dans ces derniers cas, le MCI ou le MCII doivent faire l'objet d'un Avis Technique en cours de validité).

L'épaisseur de l'élément en béton (balcon/loggia/coursive/auvent ou acrotère) réalisé où le rupteur s'intègre est comprise en tre 16 cm à 30 cm d'épaisseur.

L'épaisseur minimale des éléments supports (murs de façade) est 16 cm. En Isolation Thermique Répartie (ITR), le procédé ne pourra être utilisé que sur des façades d'épaisseur supérieure ou égale à 24 cm.

En fonction des sollicitations et du système structural, différents types de rupteurs de la même gamme peuvent être mis en place sur un même ouvrage béton.

Le domaine d'emploi est limité aux éléments en béton fixés avec des joints de fractionnement espacés des distances maximales indiquées dans le tableau en Annexe 1 du Dossier Technique. Les distances maximales entre joints de dilatation doivent respecter les prescriptions de la NF EN 1992-1-1 et de son Annexe Nationale pour les façades en béton. Pour les façades en maçonnerie, les distances maximales entre joints de dilatation sont celles du NF DTU 20.1.

En isolation thermique extérieure ou répartie, il n'y a pas de limitation en hauteur des bâtiments pouvant être équipés de rupteurs.

Le domaine d'utilisation des composants SCHÖCK ISOKORB®est limité à des éléments de construction :

- Soumis à l'action des charges d'exploitation principalement statiques ;
- Situés en dehors de tout milieu agressif.

Sous réserve que les armatures de rupteurs soient protégées par les enrobages prévus par la NF EN 1992-1-1, les rupteurs ISOKORB® peuvent être mis en place pour les classes d'expositions suivantes : X0, XC1 à XC4, XD1 à XD3, XS1 à XS3 et XF1 à XF4 (selon NF P 18-011 et NF EN 206+A2/CN).

1.2. Appréciation

1.2.1. Aptitude à l'emploi du procédé

1.2.1.1. Stabilité

Les composants mis en œuvre assurent la stabilité des éléments liaisonnés, compte tenu d'une part du dimensionnement effectué conformément aux règles en vigueur et aux prescriptions données dans le Dossier Technique, d'autre part de l'autocontrôle exercé en usine sur la fusion des barres en acier inoxydable aux barres en acier à haute adhérence. La résistance des composants est assurée dans le domaine des planchers en béton armé soumis à des charges principalement statiques et situés en dehors de toute atmosphère agressive.

1.2.1.2. Sécurité en cas d'incendie

Réaction au feu :

La protection de l'isolant est assurée par des plaques coupe-feu classées A1 selon la NF EN 13501-1 et d'épaisseur minimale 10 mm.

Résistance au feu :

La gamme de rupteurs ISOKORB®T et XT fait l'objet des appréciations de laboratoire N°RS16-037B (gamme T avec des plaques coupe-feu de 15 mm en AESTUVER et hauteur de rupteur \geq 180 mm) et AL N°041283-B (gamme T/XT et hauteur \geq 160 mm) dont le contenu est résumé dans le tableau ci-dessous.

Pour les modèles de rupteurs « ISOKORB® XT » type K/D/B/O/H/C/Q/Z/A/F et « ISOKORB® T » type K/D/B/O/ES/H/C/Q/Z/A/F, ces documents donnent un classement de capacité portante R120 (excepté le type Z qui n'est pas porteur), d'une étanchéité et isolation au feu EI de :

- 90 minutes lorsque les plaques coupe-feu mises en œuvre sont des plaques AESTUVER de chez FERMACELL d'épaisseur 10 mm ou 120 minutes avec des plaques AESTUVER de chez FEMACELL d'épaisseur 15 mm.
- 120 minutes lorsque les plaques coupe-feu mises en œuvre sont des plaques BATIBOARD de chez SITEK INSULATION (épaisseur 10 mm) ou plaques SILLATHERM SPH 135 c/si de chez ISOVER (épaisseur 15 mm en partie supérieure et 18 mm en partie inférieure).
- Les balcons en console et les balcons sur appuis réalisés avec des rupteurs Q, D, K et ses déclinaisons, BH, HV, WO, WU, K-O, K-U peuvent être pris en compte au même titre que des balcons sans rupteurs pour le calcul du C+D.

Pour les autres modèles de rupteurs non-porteurs (T/XT type Z/ZS), le classement R n'a pas été établi.

Si les plaques coupes feu sont encapsulées dans des profilés PVC, les bandes expansives d'un matériau intumescent à expansion tridimensionnelle en base graphite, sans halogène, facteur d'expansion minimum de 14, Euroclasse E suivant EN 13501-1 (réf. KERAFIX FLEXPAN 200 NG-A) se trouvent en partie haute, sur chaque face latérale du profilé.

Participation au C+D

Conformément à l'Appréciation de Laboratoire n°041283-B délivrée par le CERIB, les éléments de type K/D/O/ES/H/C/Q/A/F/Z/ZS participent à l'indice D.

1.2.1.3. Prévention des accidents lors de la mise en œuvre

La mise en œuvre des composants SCHÖCK ISOKORB® en ITE est comparable à celle de tout insert manu portable classiquement utilisé dans les ouvrages en béton, et n'a aucune influence spécifique sur la sécurité du personnel de chantier.

1.2.1.4. Isolation thermique

Les composants SCHÖCK ISOKORB® XT et ISOKORB® T permettent de traiter les ponts thermiques constitués normalement par la continuité des dalles de planchers avec balcons en porte-à-faux ou avec d'autres éléments en béton, écartant ainsi les risques de condensation superficielle en parements intérieurs. Les calculs d'isolation sont menés conformément aux règles Th-Bât.

L'isolant thermique est un produit en PSE certifié ACERMI n° 18/237/1362 (Cf. §2.2.2.2 du Dossier Technique) et conforme à la norme NF EN 13163. La conductivité thermique utile pour le calcul est donnée par le certificat ACERMI du produit et dans le Dossier Technique.

Des valeurs courantes de la transmission linéique ψ en W/(m.K) sont données dans les tableaux en Annexe 4 du Dossier Technique. Ces valeurs sont valables pour :

- Une épaisseur d'isolant (NEOPOR®) du rupteur comprise entre 8 et 12 cm.
- Une épaisseur de la dalle de 16 à 30 cm.

Les coefficients de transmission linéique moyen ψ en W/(m.K), les hypothèses ainsi que les résultats détaillés des calculs réalisés conformément aux règles Th-Bât sont donnés en Annexe 4 du Dossier Technique. Les valeurs des coefficients de transmission linéique ne sont valables qu'à condition de respecter les limites de validités décrites dans cette Annexe.

1.2.1.5. Isolation acoustique

Vis-à vis de bruits aériens, les rupteurs thermiques SCHOCK ISOKORB® ne modifient pas l'isolement acoustique de la façade. Le procédé ne détériore donc pas la performance acoustique du bâtiment.

Vis-à-vis des bruits d'impact, les rupteurs constituent une zone d'affaiblissement entre le balcon ou la coursive et les pièces intérieures. En fonction de la hauteur et du ferraillage des rupteurs ISOKORB® T/XT type K/Q/D/C/H/Z, des valeurs ΔLw [dB] sont indiquées en Annexe 5 du Dossier Technique. Ces valeurs sont valables pour des rupteurs avec ou sans plaques coupefeu. Elles peuvent être utilisées dans les calculs acoustiques de la liaison monolithique selon EN ISO 12354-2.

1.2.1.6. Étanchéité

La destination en toiture-terrasse, balcons, loggias et coursives sur espaces non clos est visée par le présent Avis :

- Les toitures-terrasses inaccessibles, les toitures-terrasses techniques ou à zone technique, les toitures-terrasses accessibles aux piétons, les toitures-terrasses végétalisées et les toitures-terrasses jardins.
- Les balcons, coursives et loggias sur espaces non clos. Les toitures-terrasses accessibles aux véhicules ne sont pas visées.

1.2.2. Durabilité

Compte tenu des conditions de fabrication des composants SCHÖCK ISOKORB® XT et ISOKORB® Tdans une usine spécialisée et sous autocontrôle suivi en permanence par des contrôles extérieurs (cf.§5.1 du Dossier Technique), et compte tenu des caractéristiques des matériaux utilisés, notamment l'acier inoxydable et les fusions, et des limitations du domaine d'emploi citées au paragraphe §1.1.2, la durabilité des composants est équivalente à celle des produits traditionnels utilisés dans la construction.

Ils ne nécessitent pas d'entretien spécifique.

1.2.3. Impacts environnementaux

Le procédé ISOKORB® ne dispose d'aucune Déclaration Environnementale (DE) et ne peut donc revendiquer aucune performance environnementale particulière. Il est rappelé que les DE n'entrent pas dans le champ d'examen d'aptitude à l'emploi du procédé.

1.2.4. Aspects sanitaires

Le présent Avis est formulé au regard de l'engagement écrit du titulaire de respecter la réglementation et notamme nt l'ensemble des obligations réglementaires relatives aux produits pouvant contenir des substances dangereuses, pour leur fabrication, leur intégration dans les ouvrages du domaine d'emploi accepté et l'exploitation de ceux-ci. Le contrôle des informations et déclarations délivrées en application des réglementations en vigueur n'entrent pas dans le champ du présent Avis.

Le titulaire du présent Avis conserve l'entière responsabilité de ces informations et déclarations.

1.3. Remarques complémentaires du Groupe Spécialisé

L'opération de fusion est soumise à l'autocontrôle du fabricant et est supervisée par un organisme extérieur. Tous les essais ont mis en évidence une résistance de fusion supérieure à la résistance des armatures courantes.

Il est rappelé qu'un plan de calepinage doit être établi en concertation entre le titulaire, le BET Thermique et le BET Structure de l'opération.

Les acrotères doivent être conformes au DTU 20.12 (y compris ceux équipés de rupteurs verticaux).

Vis-à-vis de la durabilité des balcons, le Groupe attire l'attention sur la nécessité de prendre en considération le §2.3.6 à 2.3.8 du Dossier Technique.

Une attention particulière est à accorder sur la nécessité d'éviter tout contact lors de la mise en œuvre, entre l'isolant du rupteur et les produits contenant des solvants incompatibles avec les matières plastiques.

Il est rappelé sur la nécessité de mettre en œuvre l'acier filant précisé sur les schémas en annexe au-dessus des barres avec buton d'ancrage dans le cas d'utilisation des rupteurs K-O et K-U.

2. Dossier Technique

Issu des éléments fournis par le titulaire et des prescriptions du Groupe Spécialisé acceptées par le titulaire

2.1. Mode de commercialisation

2.1.1. Coordonnées

Titulaire:

Société SCHÖCK BAUTEILE GmbH

Distributeur:

Société SCHÖCK France, www.schoeck.com/fr/home

2.1.2. Mise sur le marché

Les produits doivent faire l'objet d'une Déclaration des Performances (DdP) lors de leur mise sur le marché conformément au règlement (UE) n° 305/2011 article 4.1. Les produits conformes à cette DdP sont identifiés par le marquage CE.

Les types QF, QF, ES/ESi, B et W ne sont pas couverts par l'ETE 17/0261 du 07 septembre 2022 et ne disposent donc pas de marquage CE à ce titre.

2.1.3. Identification

Chaque composant SCHÖCK ISOKORB®est identifié par au moins une étiquette autocollante indiquant la dénomination commerciale, le type du composant ainsi que de succinctes instructions de mise en œuvre.

2.2. Description

2.2.1. Principe

Les rupteurs thermiques SCHÖCK ISOKORB® T/XT sont des composants structuraux destinés à assurer la continuité verticale et horizontale de l'isolation (quelle que soit son épaisseur) extérieure (ITE) et/ou répartie (ITR) des bâtiments, en évitant les ponts thermiques à la liaison entre les balcons ou loggias et la façade ou les acrotères et la façade.

La gamme de rupteurs thermiques SCHÖCK ISOKORB $^{\circ}$ comporte les gammes suivantes :

- Gamme T : épaisseur isolant 80 mm
- Gamme XT : épaisseur isolant de 120 mm

Chaque gamme est déclinée dans les modèles (nommés Types dans la suite du document) présentés ci-dessous et le Tableau 1 ci-après :

- Types K, K-O, K-U, C et D: pour les éléments en porte-à-faux (comme K-HV, K-BH; K-WO et K-WU).
- Types Q: pour les éléments sur appuis.
- Types ES (ESi), H: pour reprendre les efforts sismiques.
- Types A et F : pour les liaisons dalle/acrotère.
- **Type O**: pour les liaisons dalle/console de support de parement.
- **Type B**: pour les liaisons refend/poutre.
- **Type W**: pour les liaisons refend intérieur / mur extérieur.
- Types Z et ZS: isolant sans armatures traversantes. Il s'agit d'un modèle de compensation.

Les modèles de rupteurs ISOKORB® en ITE ont une longueur qui varie entre 250 mm (par ex. les modèles A, O et F) et 1000 mm (information précisée en Annexe 3 pour chaque modèle). L'épaisseur de l'élément en béton (balcon/loggia/coursive/auvent ou acrotère) réalisé où le rupteur s'intègre est comprise entre 16 cm à 30 cm d'épaisseur.

Les types de rupteurs sont détaillés dans l'Annexe 2 et 3 du Dossier Technique.

Ces rupteurs sont tenus d'assurer, en plus de la continuité de l'isolation, la liaison mécanique entre les éléments concernés dans la limite de leur capacité. Cette liaison est assurée en fonction des types par des armatures traversant l'isolant et ancrées de part et d'autre dans les éléments béton, associé ou non à des butons métalliques (SCE) ou des modules de compression « HTE » (CCE). Afin d'éviter leur corrosion, les parties d'armatures traversant l'isolant sont en acier inoxydable et les parties noyées dans le béton sont en acier noir pour béton armé, la jonction des deux types d'aciers est réalisée par fusion bout à bout.

Tableau 1 : Ensemble de modèles rupteur ISOKORB®

T/XT Type de base	Variante	Lia ison traitée
Туре К	К	Façade – balcon/auvent/loggia en porte-à-faux
	KF	Façade – balcon/auvent/loggia en porte-à-faux avec prédalle
	K-HV	Façade – balcon/auvent/loggia en porte-à-faux avec décalage vers le bas
	K-BH	Façade – balcon/auvent/loggia en porte-à-faux avec décalage vers le haut
	K-BHI	Façade – balcon/auvent/loggia en porte-à-faux avec décalage vers le haut
	K-WO, K-U	Façade – balcon/auvent/loggia en porte-à-faux avec liaison en pied du voile
	K-WU, K-O	Façade – balcon/auvent/loggia en porte-à-faux avec liaison en tête du voile
Туре С		Façade – balcon/auvent/loggia en angle
Type D		Dalle - dalle en porte-à-faux
Type Q	Q, QFi, QZ, Q-W	Façade – dalle sur appui
	QF	Façade – dalle sur appui avec prédalle
	Q-HV	Façade – dalle sur appui avec décalage vers le bas
	Q-WO	Façade – dalle sur appui avec ancrage en pied du voile
	Q-WU	Façade – dalle sur appui avec ancrage en tête du voile
	QP, QPZ, QPVV	Façade – dalle sur appui avec rupteurs ponctuels
Туре Н	Н	Reprise des efforts sismiques ponctuels
	ES / ESi	Reprise des efforts sismiques ponctuels
Type A et F		Acrotère, bandeau ou garde-corps
Туре О	0	Façade – bandeau en porte à faux
	O-WO	Façade – bandeau en porte à faux en liaison en pied du voile
	O-WU	Façade – bandeau en porte à faux en liaison en tête du voile
Туре В		Poutre - poutre
Type W		Refend - Refend
Type Z et ZS		Rupteur de compensation (isolation)

2.2.2. Caractéristiques des composants

Les rupteurs SCHÖCK ISOKORB® adaptés suivant le type d'application, sont composés d'une association de différents matériaux et couverts par l'ETE 17/0261 (07 septembre 2022):

- Isolant en polystyrène expansé
- Plaques de protection au feu si nécessaire (utilisés dans les conditions demandées par l'Appréciation de Laboratoire n° AL 041283-B) et AL RS16-037B
- Réseau d'armatures de traction, d'armatures inclinées, butons métalliques « SCE » et/ou modules de compression « HTE » (pour High Thermal Efficiency).
- Pour certains modèles, la protection haute et basse est assurée par un profilé PVC

Le tableau ci-dessous permet d'identifier le type d'élément de compression utilisé en fonction du rupteur.

Tableau 2 : Identification des modèles rupteur ISOKORB® et leurs éléments de compression

ISOKORB®T	ISOKORB®XT	Elément de compression béton CCE (HTE)	Elément de compression métallique (SCE butons ou barres)
K M1-M11	K M1-M10	Oui	
K M12-M14	K M11-M13		Oui
C M1		Oui	
C M2-M3		Oui	Oui
	C M1-M2		Oui
	D		Oui
	Q / Q-VV	Oui	
Qi / QF			Oui
	Q-P / Q-P-VV		Oui
	H / ES		Oui
	A		Oui
	F		Oui
0			Oui
В			Oui
W			Oui
	Z/ZS		

2.2.2.1. Aciers

Les armatures sont composées d'une partie traversant l'isolant en acier inoxydable et de deux parties ancrées dans le béton en acier noir. Le raccord entre les différentes armatures d'acier inoxydable (ϕ_2) et les armatures en acier noir (ϕ_1) se fait par fusion bout à bout sans métal d'apport, à l'usine de production SCHÖCK sous contrôle externe et interne permanents. Tous les essais ont mis en évidence une résistance du point de fusion supérieure à la résistance des armatures courantes.

Les compositions de diamètre acier noir – acier inox – acier noir visées dans le présent DTA sont présentées sur le tableau cidessous :

Tableau 2 : Diamètres acier noir – acier inox – acier noir

Diamètres $\phi_1 - \phi_2 - \phi_1$
8 - 6,5 - 8
8 - 7 - 8
10 - 8 - 10
12 - 9,5 - 12
12 - 10 - 12
12 - 11 - 12
14 - 12 - 14

Conformément aux recommandations d'autocontrôle définies dans le DEE 050001-00-0301 (février 2018) et le DEE 050001-01-0301, un plan de contrôle est effectué suivant le schéma 1+ et il est repris dans l'ETE 17/0261 (06 juin 2023).

2.2.2.1.1. Acier inoxydable

L'acier inoxydable utilisé est conforme à la norme NF EN 10088 partie 3.

La nuance utilisée pour les barres inox est 1.4571, 1.4362, 1.4482, 1.4404 ou 1.4401 du diamètre 6,5 mm au 20mm.

Les justifications de résistance sont faites en tenant compte de la contrainte en traction de l'acier noir fixée à 500 MPa et de la résistance de l'acier inoxydable du rupteur qui est de Rp0,2 \geq 700 MPa. La résistance à la traction et les variantes des barres de traction, d'effort tranchant et de compression sont définies dans l'ETE 17/0261 (Annexe A6-A16).

Pour les butons de compression en acier, seule la nuance n°1.4362 (équivalent à l'acier X2CrNiN23-4) est utilisée.

Les aciers inoxydables sont de classe III en résistance de corrosion suivant EN 1993-1-4 et classe A1 suivant EN 13501-1.

Les valeurs de calculs sont indiquées dans l'ETE, annexes C1 + C2, C6 + C7.

2.2.2.1.2. Acier de béton armé : armatures situées en-dehors de la partie isolante

Il s'agit de l'acier constitutif des éléments structuraux du rupteur. Cet acier est équivalent à l'acier B500, selon la NF A35 080-

Pour le modèle T/XT K-O et le modèle T/XT K-U, il conviendra de mettre en place des aciers filants au-dessus des butons d'ancrage, tels que décrit en Annexe 3.

2.2.2.1.3. Acier demontage: acier de construction sans fonction structurale

Il s'agit de l'acier constitutif des éléments de maintien ou de calage, n'ayant pas de fonction structurelle à remplir dans la liaison. Cet acier est équivalent à l'acier B500.

2.2.2.1.4. Butons de compression : acier inoxydable SCE (ETE 17/0261 annexe A8 - A13)

Les butons sont constitués de barres (diamètre 10 mm à 16 mm en fonction du modèle) en acier inoxydable aux extrémités desquelles des plaques de répartition, selon ETE annexe §A.2.4, y sont soudées. Les efforts de compression dans les éléments sont diffusés dans la masse de béton par les plaques de répartition.

Les butons de compression en acier sont destinés aux T/XT Type K M12, T/XT Type Q-P et T/XT Type O.

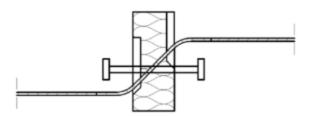


Figure 1 : Modèle T Type Q avec butons de compression en acier

Il existe également des types de rupteurs utilisant des barres en compression avec butons sur une seule extrémité (T/XT Type K-U et K-O).

Les autres types utilisent des barres de compression droites pour reprendre les efforts de compression : T Type XT M12, T/XT Type K M13, T Type K M14, T/XT Type A, T/XT Type D, T Type QF, T Type QFi, T/XT Type B, T/XT Type W et T/XT Type F. Les valeurs de calculs sont indiquées dans l'ETE, annexe C.1.3.

2.2.2.2. Isolant – polystyrène expansé moulé

L'isolant utilisé est en polystyrène expansé conforme à la norme NF EN 13163 :

PSE fabriqué avec pour matière première du NEOPOR® pour tous les types de rupteurs.

Il a pour dimensions utiles:

- Épaisseur : 8 ou 12 cm. Des encoches sont présentes sur le corps isolant, afin de permettre un cintrage dans le béton des aciers de tranchant.
- Hauteur: variant entre 130 mm (lorsque superposition d'une plaque de protection au feu) et 500 mm. La hauteur totale du rupteur varie entre 160 et 500 mm.
- Longueur : égale à la longueur de l'élément :

o Linéaire: 50 cm à 100 cm

o Ponctuel: 10 cm à 50 cm

- Il provient d'une fabrication externe et ont les caractéristiques suivantes :
 - o Masse volumique : 25 (-0/+ 5) kg/m³
 - o Contrainte en compression à 10 % de déformation ≥ 120 kPa
 - Conductivité thermique: Le produit ISOKORB® ISOKORB® Th31 en NEOPOR® est certifié ACERMI, certificat ACERMI N°18/237/1362
 - o Euroclasse de réaction au feu : E selon EN 13501-1

Les produits isolants font l'objet d'une déclaration des performances établie par le fabricant sur la base de la norme NF EN 13163.

Des autocontrôles sont réalisés sur les panneaux isolants et sont conformes à la norme NF EN 13163.

Le site de fabrication des panneaux isolants est certifié ISO 9001.

Un plan de contrôle a été mis en place entre la société SCHÖCK et le fabricant d'isolant (voir § 1.8 Principes de fabrication et de contrôle).

2.2.2.3. Plaques de protection au feu et/ou plaques de protection contre la flamme du chalumeau

Les plaques coupe-feu sont :

- Soit des plaques AESTUVER® de FERMACELL, d'Euroclasse A1 (NF EN 13501-1),
- Soit des plaques BATIBORD® d'Eurodasse A1 (NF EN 13501-1),
- Soit des panneaux de laine de roche (SILLATHERM SPH 135c/si) d'Euroclasse A1 (NF EN 13501-1)

L'épaisseur des plaques AESTUVER® et BATIBORD® est de 10 mm et sa largeur correspond au minimum à l'épaisseur de l'isolant du rupteur (8 ou 12 cm). Pour les rupteurs QF/QFi et ES/ESi uniquement, l'épaisseur de la plaque AESTUVER® utilisée est de 15 mm

L'épaisseur minimale des plaques SILLATHERM est de 15 mm en partie supérieure et 18 mm en partie inférieure et sa largeur correspond au minimum à l'épaisseur de l'isolant du rupteur (8 ou 12 cm).

Ces éléments proviennent d'un fabricant extérieur faisant l'objet d'un autocontrôle.

<u>Pour une résistance au feu</u>: Il est demandé qu'une plaque de protection soit collée sur l'isolant et déborde de 1 cm de part et d'autre du corps isolant lorsqu'elle est située dans la zone tendue. Du côté de la zone comprimée, les bords des plaques sont alignées avec le corps isolant. Elles peuvent aussi être maintenues par un profilé plastique PVC (voir chapitre §2.2.2.5). La plaque n'est alors pas en débord par rapport au corps isolant et la fonction coupe -feu est assurée par des bandes intumescentes en partie haute (cf. validées par l'Appréciation de Laboratoire n°AL041284 du CERIB).

La bande intumescente est un matériau de construction moussant tridimensionnel sans halogènes sur une base de graphite avec un facteur de mousse minimum de 14, classe B1 selon la norme EN 13501-1.

<u>Pour répondre à la règle du C+D</u>, tous les rupteurs ISOKORB® sont équipés de plaques coupe-feu avec ou sans profilé PVC pour résister au feu pendant une période allant jusqu'à 120 minutes (classification R120) et respectant le critère EI90 pour les plaques AESTUVER® et le critère EI 120, pour les plaques BATIBORD® et les panneaux en laine de roche SILLATERM SPH 135 c/si.

<u>Pour la mise en œuvre de l'étanchéité</u>: Lorsqu'une étanchéité est prévue, et dans le cas d'une mise en œuvre du pare-vapeur ou d'une équerre à la flamme du chalumeau, il est indispensable de protéger l'isolant en polystyrène de la flamme du chalumeau via la présence de ces plaques coupe-feu.

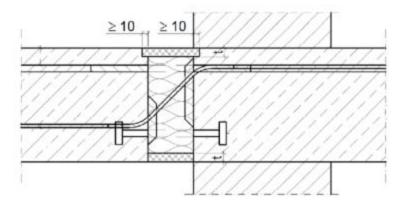


Figure 2 : types avec plaques coupe-feu et sans profilé plastique

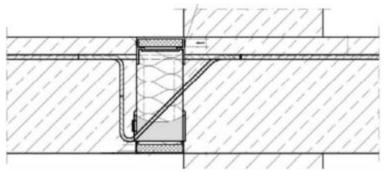


Figure 3 : type K avec plaques coupe-feu et profilé plastique

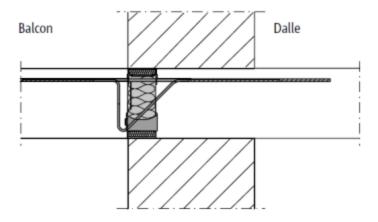


Figure 4 : type K avec une isolation répartie ITR

2.2.2.4. Modules de compression HTE/CCE

Le module de compression HTE (Annexe A15 de l'ETE) est constitué de béton fibré de haute résistance enveloppé dans un coffrage plastifié HD-PE. La composition de ce béton est connue au CSTB. Deux variantes de ces modules sont proposées (HTE 20 et HTE 30), chacune présente sur les gammes T et XT.

Dans le cadre des contrôles internes et dans le cadre du marquage CE, les propriétés de ces modules de compression HTE sont contrôlées systématiquement.

Les valeurs de calcul sont indiquées dans l'ETE 17/0261 Annexe C4-C7.

2.2.2.5. Profilé plastique PVC

Sur certains types (T/XT Types K/H/Z), la protection haute et basse de l'isolation est assurée par un profil plastique PVC selon EN ISO 17855-1 et EN ISO 17855-2. Le profilé haut maintient, grâce à sa forme spéciale, les aciers de traction en place et garantit l'enrobage.

Le profil bas protège les plaques coupe-feu ou l'isolant.

Les profilés plastiques servent comme support pour les autocollants qui indiquent les références du rupteur ainsi que le sens de pose et les recommandations de mise en œuvre.

Pour les autres types de rupteurs avec un critère feu demandé, l'isolant est protégé directement par des plaques coupe-feu décrites ci-dessus.

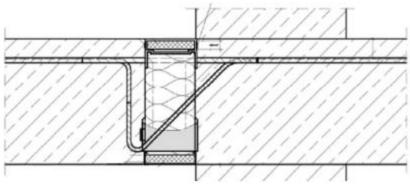


Figure 5 : type K avec plaques coupe-feu et profilé plastique

2.2.2.6. Complément d'isolation

Les compléments d'isolation sont des éléments à dimensions variables et adaptés aux besoins des dispositions géométriques et structurales.

Ces compléments d'isolation se distinguent en deux catégories :

- Les modèles T/XT ZS: ils permettent de compenser un vide sur le plan vertical de l'isolant des rupteurs.
- Les modèles T/XT Z: ces compléments d'isolation permettent de compenser un vide sur le plan horizontal.

La géométrie des éléments T/XT Type Z/ZS est décrite en annexe 2.

Le complément d'isolation T/XT Type ZS est destiné à ajuster la hauteur du rupteur en cas de besoin. Cet isolant est équipé d'une bande adhésive qui peut être fixé soit en usine soit sur chantier, en partie haute ou basse du rupteur associé.

Le complément d'isolant est pris en compte lors de la conception, mais cela ne modifie pas les caractéristiques mécaniques ou le degré coupe-feu du rupteur. L'épaisseur du complément d'isolant est égale à celle du rupteur, soit de 80 mm (gamme T) soit de 120 mm (gamme XT) et la longueur est équivalente à celle du rupteur. La hauteur du complément d'isolation est variable entre 10 et 150 mm avec un pas de 10 mm.

Avant collage sur le rupteur (et donc soit sur le profilé plastique, soit sur la plaque coupe-feu), il faut nettoyer la surface pour garantir une adhérence suffisante de la bande adhésive sur le rupteur. Le marquage du type de rupteur reste visible en sousface ou sur la face supérieure et sur les côtés latéraux du rupteur. Les lamelles T/XT type ZS sont représentées sur le plan de calepinage.

Sur demande, un représentant de la société SCHÖCK pourra être présent pour s'assurer que les points notés ci-dessus sont appliqués dans les règles de l'art.

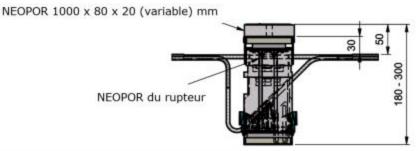


Figure 6 : Complément d'isolation T/XT Type ZS collé sur un rupteur

Le modèle T/XT Type Z est un élément non structurel uniquement composé d'un corps isolant muni de plaques coupe-feu sur ses faces inférieures et supérieures. Il s'utilise comme élément de compensation horizontal à coté de rupteurs structurels. Cela permet de traiter le pont thermique sur des zones où il n'est pas nécessaire d'avoir une continuité des aciers (en face d'une trémie, d'une réservation, ... ou encore en rive non porteuse).

L'épaisseur est soit de 80 mm (gamme T) soit de 120 mm (gamme XT). La longueur standard est de 1 m, celle -ci peut être adaptée sur site selon les besoins. La hauteur est variable entre 160 et 250 mm avec un pas de 10 mm.

Différents cas d'utilisation de ce modèle sont possibles :

- Cas 1 : Ils peuvent être disposés en extrémité ou en partie courante de balcon entre des rupteurs structuraux. Par exemple, en face d'une trémie, d'une réservation, au niveau d'ancres de levage pour un élément préfabriqué, etc... Les sollicitations sont alors reprises par les rupteurs structuraux adjacents.
- Cas 2 : Ils peuvent être disposés sur une zone non structurelle ne nécessitant pas de continuité des aciers. Par exemple, sur les retours de balcons où un isolant doit filer verticalement.

Le ferraillage du balcon doit être adapté pour que les efforts gravitaires et/ou sismiques transitent par les rupteurs porteurs adjacents des modèles Z selon l'Eurocode 2. Dès lors qu'un modèle T/XT Type Z de plus de 30 cm est disposé à côté d'un rupteur thermique porteur, le ferraillage du balcon doit être adapté afin de diffuser les efforts vers les rupteurs thermiques porteurs adjacents selon l'ETE 17/0261.

Les modèles T/XT Type Z sont représentés sur le plan de calepinage.

Sur demande, un représentant de la société SCHÖCK pourra être présent pour s'assurer que les points notés ci-dessus sont appliqués dans les règles de l'art.

2.2.2.7. Béton

Les rupteurs doivent être noyés dans des éléments en béton armé de la classe de résistance minimale à la compression C25/30 suivant la norme béton NF EN 206+A2/CN.

L'enrobage minimum des armatures des rupteurs de pont thermique par rapport à l'arase supérieure d'une prédalle doit être de 10 mm.

Page 1 sur 227

2.2.3. Pose courante des rupteurs en ITE et ITR

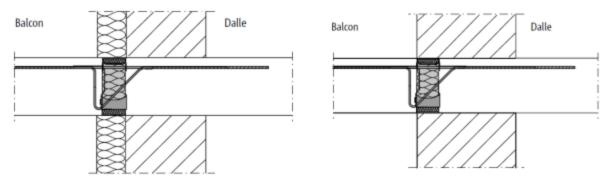


Figure 7 : type K avec une isolation extérieure ITE et en isolation répartie ITR

2.3. Dispositions de conception

2.3.1. Généralités

Les documents techniques de référence pour les justifications de résistance, de stabilité et de déformabilité des parties des ouvrages concernées par l'utilisation des composants SCHÖCK ISOKORB® sont les suivants :

- NF-EN-1991-1-1 pour la définition des charges permanentes et d'exploitation dues aux forces de pesanteur.
- NF-EN-1991-1-3 pour les charges de neige à prendre en compte ;
- NF-EN-1991-1-4 pour les charges de vent à prendre en compte ;
- NF EN 1992-1-1 pour le calcul du béton armé ;
- NF-EN-1992-1-2 pour les calculs à chaud des ouvrages béton armé
- NF-EN-1993-1-1 pour le calcul des structures en acier
- NF-EN-1993-1-4 pour le calcul au flambement des barres comprimées (scellées ou butonnées);
- Pour la conception et le calcul des planchers avec prédalles en attendant la parution du NF DTU 23.4, il peut être fait référence au Cahier 2892_V3 de mai 2020 ;

- Règles Th-Bât pour le calcul des caractéristiques d'isolation thermique des parois;
- Norme Européenne EN 12354 pour le calcul d'isolement acoustique
- NF EN 206+A2/CN
- NF-EN-1998 pour les calculs des structures pour leurs résistances aux séismes
- DEE n° 050001-00-0301 / DEE n°050001-01-0301
- ETE 17/0261

2.3.2. Structures-en ITE-ITR

Le dimensionnement structurel est effectué sur la base des efforts à reprendre calculés par le BET structure de chaque projet.

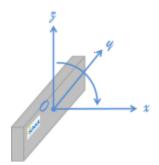


Figure 8 - Convention de signe retenue

En isolation par l'extérieur ou répartie, les éléments (balcons, casquettes, acrotères, bandeaux, etc...) sont à considérer dans la plupart des cas comme étant des éléments rapportés à l'ensemble monolithique que forme le bâtiment. Pour la vérification du rupteur, il y a donc lieu de déterminer les efforts agissant sur l'élément rapporté, puis de les ramener à la liaison que forme le rupteur entre l'élément et le bâtiment.

Le dimensionnement peut être séparé en 4 étapes décrites dans les 4 paragraphes suivants.

2.3.2.1. Forces agissantes en ITE-ITR

2.3.2.1.1. Généralités

Il y a lieu pour le BET Structure de considérer toutes les forces qui s'appliquent sur l'élément repris par SCHÖCK ISOKORB®. On y trouvera notamment :

- Les charges permanentes (poids propre de l'élément, poids propre des éléments qui y reposent : chapes, etc...).
- Les charges permanentes doivent être ramenées à la liaison en termes de moment et d'effort tranchant selon les lois de la Résistance des Matériaux. Cela est fait par rapport à la longueur effective du balcon (l) déterminée selon §5.3.2 de l'Eurocode 2. Le porte-à-faux de calcul d'un balcon est alors plus important que la longueur de la partie béton du balcon. Cette approche est très sécuritaire, car les sollicitations utilisées pour le dimensionnement du rupteur sont « majorées ». Il est possible également d'optimiser les calculs, en prenant la distance entre l'axe de référence et le bord extérieur du voile de 75 mm pour la gamme T et de 100 mm pour la gamme XT :

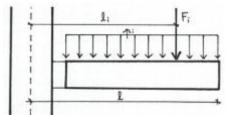


Figure 9 - Système pour calculer les sollicitations

- Les charges variables (charges d'exploitation, dont vent local).
- Les charges variables sont ramenées à la liaison de la même manière que les charges permanentes.
- L'action sismique lorsqu'il s'agit d'un bâtiment qui requiert des dispositions sismiques au sens de l'arrêté du 22 octobre 2010 modifié.

2.3.2.1.2. Cas particulier de l'action sismique

Classification sismique des éléments repris par SCHÖCK ISOKORB®:

Les effets de l'action sismique sont causés par des forces d'inertie et dépendent du comportement dynamique de la structure du bâtiment, des éléments extérieurs et de leurs emplacements dans la structure. La norme NF EN 1998-1 spécifie différents types d'éléments de construction (voir Figure 10) :

• Éléments sismiques primaires :

Ces éléments de construction font partie de la structure du bâtiment qui résiste à l'action sismique, modélisée dans l'analyse pour la situation de calcul sismique et entièrement conçue et détaillée pour la résistance aux tremblements de terre conformément aux règles de la NF EN 1998-1.

• Éléments sismiques secondaires :

Ces éléments de construction sont des éléments qui ne sont pas considérés comme faisant partie du système de résistance aux actions sismiques et dont la résistance et la rigidité aux actions sismiques sont négligées.

Éléments non structuraux :

Ces éléments de construction sont des éléments architecturaux, mécaniques ou électriques, des systèmes et des composants qui, en raison de leur manque de résistance ou de la manière dont ils sont reliés à la structure, ne sont pas considérés dans le calcul sismique comme des éléments porteurs.

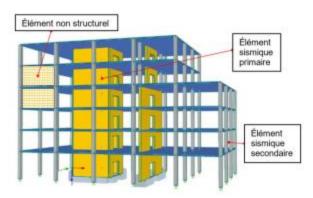


Figure 10 : - Différents types d'éléments structuraux pour le calcul sismique selon la norme EN 1998-1

Les éléments de construction extérieures tels que les balcons, bandeaux filants, acrotères, auvents, ... ne sont pas mentionnées explicitement. Ces éléments de construction et leurs jonctions via les rupteurs peuvent être classés en deux catégories d'exigences :

Catégorie d'exigences I (RC I)

Les éléments extérieurs tels que les balcons, coursives et loggias sont considérés comme des éléments sismiques secondaires.

• Catégorie d'exigences II (RC II)

Les éléments extérieurs tels que les bandeaux filants, acrotères, auvents, ... sont considérés comme des éléments non structuraux

2.3.2.2. Combinaisons de charge en ITE-ITR

Les combinaisons de charge à considérer sont les suivantes :

• ELU fondamental

Pour le cas ELU fondamental, il y'a lieu de considérer les charges permanentes (G) et les charges variables (Q), et de les combiner selon l'Eurocode. Cela conduit en règle générale à considérer $1,35 \times G + 1,50 \times Q$.

ELU sismique

Cas des éléments de construction en catégorie RCI:

Le dimensionnement des dalles avec rupteurs doit être conforme aux règles générales énoncées dans la norme NF EN 1990 et NF EN 1992-1-1. Pour les états limites ultimes, il doit être démontré que la valeur de calcul des effets de l'action sismique (E_{dAE}) ne dépasse pas la valeur de calcul de la résistance du rupteur (R_d):

$$E_{dAE}$$
 Rd

οù

 \circ E_{dAE} : valeur de calcul des effets de l'action sismique

R_d: résistance de calcul du rupteur.

La valeur de calcul des effets de l'action sismique est déterminée conformément au §6.4.3.4 de la NF EN 1990-1 et son Annexe Nationale. Les effets des actions sismiques sont causés par des forces d'inertie. Ces forces d'inertie résultent des masses des éléments selon la combinaison suivante (§3.2.4 de la NF EN 1998-1):

$$G_{K,j}$$
 ($_{E,i}$ $Q_{k,i}$)

o E_{i} : coefficient de combinaison actions variables. $E_{i} = j \times y_{2i}$ lors de la détermination des effets de l'action sismique de calcul. Les valeurs recommandées pour j sont énumérées dans la norme NF EN 1998-1 et E_{i} peut être calculé comme suit : $E_{i} = 1.0 \times 0.3 = 0.3$ pour les bâtiments.

Les actions sismiques dans les directions x et y doivent être prises en compte, ce qui entraı̂ne les effets d'action correspondants E_x et E_y . Ces effets d'action peuvent être superposés par la racine carrée de la somme de leurs carrés. Il est également possible d'appliquer les deux combinaisons suivantes pour calculer les paramètres de charge résultants :

a) 1,0 $E_x \oplus 0$,3 E_v

b) $0.3 E_x \oplus 1.0 E_y$

Ici, le symbole \oplus indique "combiner avec" et E_x et E_y sont les effets respectifs des actions sismiques dans les directions x et y. Les rupteurs dits sismiques (H, ES, ESi) doivent être dimensionnés pour reprendre l'ensemble des effets de l'action sismique horizontale.

Cas des éléments de construction en catégorie RCII:

Pour le cas ELU sismique, il y a lieu de considérer les charges permanentes (G), les charges variables (Q) et l'action sismique (A_{Ed}) et de les combiner selon l'Eurocode. La plupart des combinaisons ayant été vérifiées pour le domaine d'emploi, cela conduit aux vérifications suivantes :

 \circ Vérifier que l'effort horizontal F_{aH} parallèle au rupteur (axe O_v) est repris par les rupteurs sismiques.

FLS:

Pour certains modèles (K et assimilés), il y a lieu de considérer une combinaison ELS pour vérifier que la rotation du rupteur ne modifie pas le sens de la pente (cf. §2.3.2.4.3).

2.3.2.3. Choix des modèles en ITE-ITR

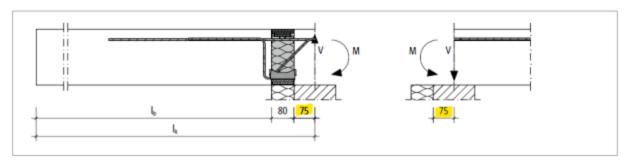
2.3.2.3.1. Fonctionnement mécanique des rupteurs ISOKORB®

Les hypothèses retenues pour le fonctionnement général du rupteur sont les suivantes :

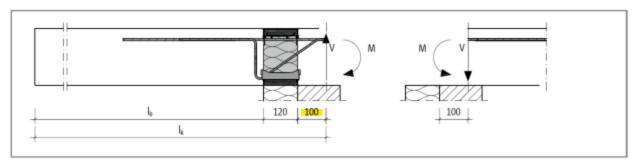
- Les moments fléchissant sont équilibrés à travers le corps isolant par les armatures supérieures et les armatures inférieures ou butons métalliques ou HTE de compression. Dans tous les types permettant d'équilibrer un moment fléchissant, la conception est telle que les armatures de traction sont situées sans décalage en plan par rapport aux butons (ou aux armatures) de compression, ce qui permet ainsi l'embiellage du système dans des plans verticaux.
- La justification en flexion consiste à s'assurer que le moment fléchissant à l'ELU, développé à la jonction des éléments liaisonnés par le rupteur, ne dépasse pas les moments résistants suivants :
 - o Le moment résistant à l'ELU par rapport aux armatures en acier tendues ;
 - Le moment résistant à l'ELU par rapport aux armatures en acier ou aux butons métalliques SCE ou HTE/CCE comprimés.
- Les efforts tranchants sont équilibrés par des armatures inclinées travaillant en traction.

Les performances mécaniques des différents modèles de rupteurs sont données en Annexe II du Dossier Technique. Ces performances ont été calculées en considérant les valeurs de l'ETE 17/0261.

2.3.2.3.2. Dimensionnement


Il y a lieu de choisir le modèle de rupteur en fonction du type d'effort à reprendre (moment, effort tranchant). Par exemple, si pour un cas de charge, des efforts de soulèvement sont à reprendre par le rupteur, il y a lieu de choisir un modèle capable de reprendre du soulèvement. Plus de détails sont donnés pour chaque modèle en Annexe.

Les efforts de résistance sont déterminés selon un axe de référence qui est précisé pour tous les types de rupteurs en Annexe D3, D4 et D5 de l'ETE 17/0261. Les valeurs de calcul des résistances de chaque rupteur sont calculées en fonction du système treillis défini dans l'ETE.


Exemple Type K:

ISOKORB® gamme T :

ISOKORB® gamme XT :

La vérification consiste à comparer les efforts résistants aux efforts appliqués :

$$F_{Ed} \leq F_{Rd}$$

Si l'égalité n'est pas respectée, il y a lieu de choisir un modèle plus ferraillé (avec un F_{Rd} plus grand).

L'attention du BET Structure est attirée sur le ferraillage d'about et des rives de dalles en porte -à-faux :

- Aux appuis, des armatures pliées ou des cadres (ouverts) doivent être convenablement prévus, dimensionnés et ancrés pour assurer la suspension de la totalité de l'effort tranchant sollicitant ;
- Des armatures convenablement dimensionnées, pliées et placées doivent équilibrer les poussées au vide du béton dues aux efforts ponctuels de compression exercés par les butons adjacents aux bords des dalles en porte -à-faux (rives libres ou vers les joints de dilatation).
- Dans le cas de dimensionnement d'un ouvrage soumis aux calculs sismiques, des mo dules sismiques T/XT Type H, ES ou ESi sont à placer entre les rupteurs. Le critère du choix de l'un ou l'autre module sismique dépend de la géométrie et des sollicitations sismiques de l'ouvrage.

Les effets suivants ont été vérifiés pour l'ensemble du domaine d'emploi et le BET Structure n'a pas charge à les revérifier :

- Un vent de tornade exceptionnel dans l'ensemble du domaine d'emploi.
- L'effet de la dilatation et du retrait thermique dans l'ensemble du domaine d'emploi.
- L'effet du retrait du béton dans l'ensemble du domaine d'emploi.

constructif décrit ci-dessus :

Le BET Structure a en charge le dimensionnement du ferraillage, notamment le ferraillage complémentaire :

- Les ouvrages adjacents sont à dimensionner par l'ingénieur structure.
- En plus du ferraillage pour reprendre les efforts gravitaires, l'ingénieur structure doit vérifier le ferraillage selon NF EN 1992 et NF EN 1992 /AN, notamment au ferraillage minimal (§ 7.3.2)
- Les bords libres doivent être ferraillés au moins selon des préconisations de la NF EN 1992-1-1, § 9.3.1.4 (2)
 - (2) Les armatures courantes prévues pour une dalle peuvent tenir le rôle d'armatures de rive.

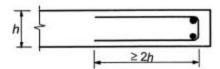


Figure 9.8 : Armatures de rive pour une dalle

Figure 11 : Prescriptions de la norme NF EN 1992-1-1, § 9.3.1.4 (2)

Les sections verticales des barres d'effort tranchant des SCHÖCK ISOKORB® types K, K-F, K-0, K-U et HV ainsi que les raidisseurs avec une distance maximale de 100 mm par rapport à l'isolation peuvent être pris en compte.

Sans vérification spécifique, des cadres de $\emptyset \ge 6$ mm, e ≤ 25 cm et deux filants $\emptyset \ge 8$ mm (cf. ETE 17/0261, B2.2) sont à prévoir.

• Armature verticale complémentaire dans les rives orientées vers les éléments de construction à liaisonner. L'armature verticale nécessaire résulte de l'armature de suspente et de l'armature de fendage, où au moins un ferraillage

V = max(R; A+S)

Avec

- V = armature verticale;
- o R = armatures de rive constructive ci-dessus ;
- A = armature de suspente ;
- S = armature de fendage.

Les principes de calcul des armatures de suspente et du fendage sont décrits dans le document ETE 17/0261, D1.1. Pour les ingénieurs, la société SCHÖCK propose des tableaux avec des sections forfaitaires.

2.3.2.3.3. Cas particulier de l'action sismique

Détermination des effets de l'action sismique :

Sous l'action sismique, les forces d'inertie agissent simultanément dans les deux directions principales en sens alterné et provoquent des forces internes linéaires dans les connexions de la dalle au plancher : forces de traction compression n_y et forces de cisaillement n_{xy} (La direction verticale du séisme n'est pas à considérer pour le domaine d'emploi revendiqué). (voir Figure 12).

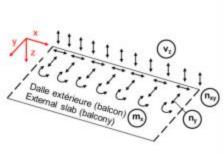


Figure 12 - Effets de l'action sismique sur les raccordements de dalles thermiquement isolées

Comme indiqué au § 2.3.2.1.2, les éléments de construction extérieurs avec rupteur sont classés dans la catégorie RC I ou RC II. L'analyse structurale des éléments de la catégorie RC II peut être effectuée par une méthode simplifiée conformément à la norme NF EN 1998-1 §4.3.5, en utilisant les charges statiques équivalentes. Pour les éléments de la catégorie RC I, les méthodes d'analyse conformément à la norme NF EN 1998-1 doivent être appliquées. (Ces méthodes de calcul peuvent également être appliquées pour les éléments de la catégorie RC II).

Méthode d'analyse RC I :

La détermination des effets sismiques s'établit suivant NF EN 1998-1 §4.3.3.1 pour les balcons en tant qu'éléments sismiques secondaires.

En fonction des spectres de réponse du plancher en jonction du balcon sont déterminés les 2 accélérations au niveau du plancher d'étage en raccordement du balcon suivant les axes X et Y (voir Figure 12) : $a_{g,P,x}$ et $a_{g,P,y}$

Les accélérations résultantes au centre de gravité de la dalle du balcon $a_{g,B,x}$ et $a_{g,B,y}$ sont déterminées en appliquant un facteur d'amplification de réponse du balcon A_a pour tenir compte de la rigidité de la liaison du plancher avec le balcon :

$$a_{g,B,x} = A_a \cdot a_{g,P,x}$$

$$a_{g,B,y} = A_a \cdot a_{g,P,y}$$

Le facteur d'amplification de la réponse A_a est défini comme suit :

$$A_a = \frac{3}{\left(1 + \left(1 - \frac{T_1}{T_a}\right)^2\right)}$$

οù

- T_a est la période de vibration fondamentale de l'élément de construction (dalle extérieure)
- T_1 est la période de vibration fondamentale du bâtiment dans la direction concernée

Le facteur d'amplification A_a tient compte des effets de résonance approximatifs possibles entre la dalle extérieure et le bâtiment et est représenté figure 13.

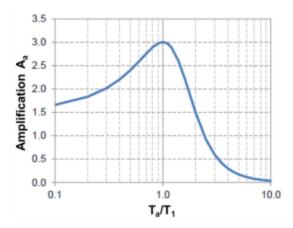


Figure 13 - Facteur d'amplification Aa (selon NF EN 1998-1)

En prenant le facteur d'amplification de la réponse A_a égale à 3,0 les phénomènes de résonnance sont pris en compte de manière sécuritaire. Les forces d'action sismique sont alors calculés suivant NF EN 1998-1 :

$$Fa_{H,x} = 3 \cdot \alpha_x \cdot P$$

$$Fa_{H,y} = 3 \cdot \alpha_y \cdot P$$

Avec:

- a_{aPx} = accélérations au niveau du plancher d'étage en raccordement du balcon suivant l'axe X
- $a_{gPy} =$ accélérations au niveau du plancher d'étage en raccordement du balcon suivant l'axe Y
- $P = G + 0.8 \times Q$ exprimé en kilonewtons (kN) pour un résultat en kilonewtons.
- α_x = Rapport entre l'accélération α_{qPx} et l'accélération de la pesanteur g
- α_y = Rapport entre l'accélération $\alpha_{q,p,y}$ et l'accélération de la pesanteur g

Méthode simplifiée RC II:

La force sismique horizontale agissante au centre de gravité de l'élément est calculée selon la formule suivante (NF EN 1998-1-1 paragraphe 4.3.5) :

$$F_{aH} = P \times S_a$$

$$S_a = \alpha \times S \times [3 \times (1 + z/H) / (1 + (1 - T_a/T_1)^2) - 0.5]$$

Pour le calcul, on prendra:

- $P = G + 0.8 \times Q$ exprimé en kilonewtons (kN) pour un résultat en kilonewtons.
- o α: Rapport entre l'accélération de calcul au niveau d'un sol de classe A, ag, et l'accélération de la pesanteur g
- S: Paramètre de sol
- $o T_a/T_1 = 1,00$
- $\circ z/H:$ Rapport de la hauteur de l'élément par rapport à la hauteur du bâtiment

<u>Autre possibilité de calcul</u>: Lorsque seule la zone et la catégorie d'importance du bâtiment sont connues, on pourra prendre pour S_a les valeurs suivantes (Sol classe A-E, $\frac{T_a}{T_*}=1$ et $\frac{z}{H}=1$):

	Catégories d'importance							
	I	I II III IV						
Zone 1								
Zone 2		dispositions smiques						
Zone 3			ı					
Zone 4			Valeur dess					

Zone de sismicité 2

Catégorie	Classe de sol						
d'importance du bâtiment	А	В	С	D	E		
III	0,47	0,64	0,71	0,75	0,85		
IV	0,55	0,74	0,82	0,88	0,99		

Zone de sismicité 3

Catégorie	Classe de sol					
d'importance du bâtiment	А	В	С	D	E	
II	0,62	0,83	0,93	0,99	1,11	
III	0,74	1,00	1,11	1,18	1,33	
IV	0,86	1,17	1,30	1,38	1,55	

Zone de sismicité 4

Catégorie	Classe de sol					
d'importance du bâtiment	А	В	С	D	Е	
II	0,90	1,21	1,35	1,44	1,61	
III	1,08	1,45	1,61	1,72	1,94	
IV	1,26	1,70	1,88	2,01	+	

<u>Autre possibilité de calcul</u>: Dans le cas où les données suivantes sont disponibles, le rapport entre les accélérations réelles horizontales du point de fixation des rupteurs extraites du modèle informatique et l'accélération de la gravité peut remplacer le coefficient S_a :

$$S_a = \frac{a_{g, \, r\'eelle}}{g}$$

Une force sismique verticale prise égale à 2/3 de la force horizontale est également appliquée au centre de gravité de l'élément :

$$F_{aV} = \frac{2}{3} \times F_{aH}$$

Choix et positions des rupteurs :

Les efforts sismiques sont repris par les rupteurs de type H ou ES, installés en combinaison avec les rupteurs reprenant les efforts tranchants et les moments fléchissants. Il y a lieu de choisir les modèles capables de reprendre les forces déterminées suivant la méthode retenue et de vérifier pour chaque sollicitation :

$$F_{Ed} \leq F_{Rd}$$

Les résistances des rupteurs sont données pour chaque modèle en Annexe 3.

Pour limiter la sollicitation de ces éléments par la dilatation, il est conseillé de les regrouper au centre du balcon ou de la dalle extérieure sur appuis. Les rupteurs sismiques sont intercalés entre les autres rupteurs et espacés d'au moins 0,6 m entre axes. Le tableau des combinaisons possibles est donné en annexe 3.

2.3.2.3.4. Longueurs de recouvrement des barres de traction et tranchant

Les armatures courantes des balcons (ou loggias) / acrotères peuvent être constituées par des aciers ou par des treillis soudés. Les longueurs des armatures de rupteurs, en attente, sont établies pour assurer le recouvrement sans crochets.

Selon les normes NF EN 1992-1-1, §8.7.3, et selon ETE 17/0261, la longueur requise de recouvrement avec l'armature des dalles adjacentes des éléments de traction et de compression est calculée comme suit.

Les dispositions du guide d'application FD P 18-717 d'août 2021 (EC2) concernant le §8.7.2 [4] sont appliqués. Le coefficient α_6 pour les barres de tractions et pour les barres d'effort tranchant est appliqué avec sa valeur 1,5. L'entraxe des armatures et armatures de recouvrement doit respecter les prescriptions de NF EN 1992-1-1, §8.7.2

Longueur de recouvrement des barres de traction

$$l_0 = \alpha_1 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \cdot l_{b,rqd} + \Delta l_0 \ge l_{0,min}$$

avec Δl_0 selon ETE Tableau A.1 et A.2 et $\alpha_6 = 1.5$

Longueur minimale de recouvrement des barres de traction

$$l_{0,min} \geq \max \begin{pmatrix} 0.3 \cdot \alpha_1 \cdot \alpha_6 \cdot l_{b,rqd} \\ 15 \cdot \emptyset \\ 200 \ mm \end{pmatrix}$$

Longueur de recouvrement des barres de tranchant

$$l_0 = \alpha_1 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \cdot l_{b,rqd} \ge l_{0,min}$$

Longueur minimale de recouvrement des barres de tranchant

$$l_{0,min} \ge \max \begin{cases} 0.3 \cdot \alpha_6 \cdot l_{b,rqd} \\ 15 \cdot \emptyset \\ 200 \ mm \end{cases}$$

Avec Δl_0 Selon ETE tableaux A.1 et A.2

 $\alpha_1 = 1.0$ Barres de compression

 $\alpha_1 = 1.0$ Barres de traction droites

 $\alpha_1 = 0.7$ Barres de traction cintrées

 $\alpha_3 = 1.0$

 $\alpha_5 = 1.0$

 $\alpha_6 = 1.5$ Zones de traction, $\rho_1 de recouvrement > 50\%$

Le recouvrement est dimensionné par le BET Structure du chantier. Seules les sections de barre nervurée peuvent être utilisées le recouvrement. Selon l'ETE 17/0261 la longueur de recouvrement commence 30 mm derrière le bord de la dalle.

Le tableau suivant indique le recouvrement minimal des barres, $l_{0,\emptyset}$, en fonction des diamètres selon NF EN 1992-1-1, §8.7.3, et selon ETE 17/0261.

С	[-]	C25/30						
Ø	[mm]	6	8	10	12	14	16	
A_s	[cm ²]	0,28	0,50	0,79	1,13	1,54	2,01	
f_{yd}	[N/mm ²]		434,78					
f_{bd}	[N/mm ²]	2,73						
$l_{b,rqd}$	[mm]	239	319	398	478	557	637	
α_1	[-]		1,0					
α_6	[-]	1,5						
$l_{0,\emptyset,min}$	[mm]	200	200	200	215	251	287	
$l_{0,\emptyset}$	[mm]	358	478	597	717	836	956	

En Annexe 3, les longueurs des armatures d'un part et de l'autre de l'isolant sont présentées pour chaque modèle de rupteur. Dans le cas où la longueur disponible des armatures n'est pas suffisante pour garantir la longueur de recouvrement minimale donnée ci-dessus, les valeurs de résistance au moment fléchissant et/ou à l'effort tranchant des rupteurs présentées dans cette annexe, sont réduit pour en tenir compte.

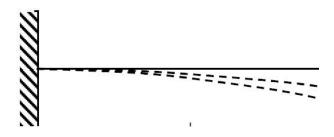
2.3.2.4. Impact sur la structure

2.3.2.4.1. Vérification de la stabilité de l'ouvrage en ITE-ITR

Les éléments en ITE-ITR étant des éléments rapportés à l'ensemble monolithique du bâtiment, ils n'ont pas d'impact sur la stabilité globale de l'ouvrage.

Il n'y a donc pas de vérification propre aux rupteurs à mener.

2.3.2.4.2. Dilatation thermique (ETE 17/0261, §B2.1)


La dilatation thermique relative du balcon/acrotère par rapport à la façade nécessite de maitriser les déplacements relatifs. La prise en compte de ce phénomène de dilatation passe par le respect de la non-plastification cyclique des aciers des rupteurs.

L'exigence de non-plastification cyclique des aciers implique que les segments de balcon/acrotère peuvent se déplacer librement tant que ce déplacement relatif ne dépasse pas le déplacement maximal des aciers avant plastification. L'Annexe 1 donne, en fonction du diamètre max. du rupteur ISOKORB® traversant l'isolant, les longueurs maximales de balcon libre e_{joint} en dessous desquelles la dilatation libre des balcons reliés à la façade n'entraine pas la plastification des aciers du rupteur thermique dans le cas d'une isolation extérieure.

2.3.2.4.3. Calcul de la flèche du balcon en porte-à-faux (ETE 17/0261, §D1.3.2)

En isolation thermique extérieure ou répartie, pour les types K et D, la déformation est à calculer suivant les recommandations suivantes. Le BET Structure doit s'assurer de la conformité de la flèche du balcon avec la norme NF EN 1992-1-1.

La déformation du rupteur en rotation induit une flèche supplémentaire en bout de porte-à-faux. Celle-ci s'additionne à la déformation classique du béton et doit être prise en compte par le BET Structure du projet, via une contre-flèche si nécessaire. Toutefois, la valeur de la flèche ne devra pas excéder $L_k/250$, conformément à la NF EN 1992-1-1 partie 7.4.1(4) ou indiquée dans les pièces écrites du projet.

Cette flèche supplémentaire se calcule avec la formule suivante :

$$w_{rupteur} = 10 \times \tan \alpha \times l_k \times M_{ELS} / M_{Rd}$$

Où:

- $w_{rupteur} = flèche$ supplémentaire due au rupteur, en millimètres pour une valeur de l_k en mètres ;
- $\tan \alpha$ = facteur de déformation donné dans le tableau en Annexe. Ce paramètre dépend du modèle de rupteur et de sa hauteur ;
- l_k = longueur du porte-à-faux en mètres ;
- M_{ELS} = Valeur du moment pour lequel on calcule la déformation. Cette valeur est prise conformément à la norme NF EN 1992-1-1 à l'ELS quasi-permanent, ce qui revient dans la plupart des cas à considérer $G + \psi_2 \times Q$;
- M_{Rd} = Valeur du moment résistant du rupteur. Dépend du modèle et de la hauteur du rupteur.

Les rupteurs sont d'abord dimensionnés en fonction de $M_{y,Rd}$ et $V_{y,Rd}$. A cette étape de dimensionnement, une vérification des flèches est nécessaire. Cette vérification consiste à comparer la flèche totale (addition de la flèche complémentaire en fonction du rupteur choisi et la flèche issue d'un calcul normalisé) à la limitation des flèches normalisée L/250 ou indiquée dans les pièces écrites du projet.

En référence à l'ETE 17/0261, les déformations au niveau de la dalle dues aux moments de torsion locaux sont à négliger pour l'ensemble des rupteurs visés par le présent DTA.

2.3.3. Sécurité incendie en ITE-ITR

La tenue au feu des rupteurs est assurée par les plaques coupe-feu présentes en parties haute et basse. Ces plaques équipent donc les rupteurs lorsqu'il y a une exigence de tenue au feu.

Les plaques coupe-feu sont décrites au paragraphe §2.2.2.3. Les plaques coupe-feu ne doivent à aucun moment être traversées pour le cheminement des gaines techniques.

Les plaques en laine minérale se trouvent systématiquement intégrées dans les modèles avec profil PVC.

La gamme de rupteurs ISOKORB® Tet XT fait l'objet des Appréciations de Laboratoire N°RS16-037B (gamme T avec des plaques coupe-feu de 15mm en AESTUVER et hauteur du rupteur ≥ 180 mm) et AL N°029908 / AL N°034939 (gamme T/XT et hauteur du rupteur ≥ 160 mm) dont le contenu est résumé dans le tableau ci-dessous.

Gamme T (RS 16-037/B du CSTB)

Modèle	Rapport d'essai	Appréciation de la boratoire	Equivalence de classement
K/D/A	 RS06-167 (Juillet 2007) suivant NF EN 1365-5 Modèle K (9 barres de tension Ø8, 3 barres de cisaillement Ø6, 6 modules de compression HTE) Parement isolant AESTUVER Dalle béton 3 m x 2,9 m x 18 cm 	RS16-037B Extension à : Type K (tous diamètres, espacements et hauteurs) Types D et A (tous diamètres, espacements et hauteurs) Support béton armé ou maçonnerie (béton ou terre cuite) * Dalle pleine béton armé, prédalle, prédalle précontrainte * Epaisseur dalle 180 mm minimum Parement AESTUVER	R120**
W	RS98-064 (Octobre 1998) suivant programme thermique de l'arrêté du 21 avril 1983 • Modèle RF • Essai réalisé sans chargement	RS16-037B Extension à : Type W sans chargement Refends intérieurs béton armé et refends extérieurs béton armé*	R120**
Q/ES	RS07-075 (Juin 2007) suivant NF EN 1363-1 • Modèle DF 6/4 • Prédalle béton armé (épaisseur prédalle 55mm – totale 180mm) RS07-132 (Avril 2008) suivant NF EN 1363-1 • Modèle DF 6/4 • Parement AESTUVER • Dalle et voiles béton	RS16-037B Extension à : Type Q et ES (tous diamètres, espacements et hauteurs) Support béton armé ou maçonnerie (béton ou terre cuite) * Dalle pleine béton armé, prédalle, prédalle précontrainte * Epaisseur dalle 180 mm minimum Parement AESTUVER	R120**

^{*}L'équivalent de classement du rupteur ne peut être revendiqué qu'à condition que les éléments de structure (murs, planchers) à l'interface desquels il est incorporé soient justifiés.

^{**}Les valeurs données dans le tableau suivant, tirées des valeurs calculées pour les maquettes testées au feu, sont des valeurs limites à ne jamais dépasser.

Gamme T et XT (AL 041283-B du CERIB):

Types	Rapport d'essai	Appréciation de laboratoire	Equivalence de classement
Gamme T et XT : K/D/A/O/F/Q/H(ES)/B/W	CERIB 010356 (Octobre 2017) suivant NF EN 1365-5 • Modèle K (13 barres de tension Ø12, 9 barres de cisaillement Ø8, 18 modules de compression HTE, KXT100) • Parement isolant AESTUVER 10 mm ou BATIBORD 10 mm CERIB 029908 (Septembre 2021) suivant NF EN 1365-5: Equivalence en plaques SILLATHERM SPH 135 c/si en 15 mm en partie basse CERIB 041284 (Octobre 2023): Tous les types de rupteurs	AL 029908 / 034939 / 041283-B & PV 029909 / 034940 / 041284-B Extension à : Gamme T et XT Type K (tous diamètres, espacements et hauteur ≥160mm) Types D/A/Q/H (tous diamètres, espacements et hauteurs) Support béton armé ou maçonnerie (béton ou terre cuite) * Dalle pleine béton armé, prédalle précontrainte * Epaisseur dalle 160mm minimum Parement AESTUVER BATIBORD SILLATHERM SPH 135 c/si Participation à l'indice D	R120/E120/EI90 (AESTUVER) R120/E120/EI120 (BATIBORD ou SILLATHERM)
Gamme T et XT : Type Z/ZS	CERIB 041284 (Octobre 2023) :	AL 34939 & PV 034940 & CERIB AL 041283-B et PV 041284-B d'octobre 2023 Type Z/ZS	EI90 (AESTUVER) EI120 (BATIBORD ou SILLATHERM)

^{*}L'équivalent de classement du rupteur ne peut être revendiqué qu'à condition que les éléments de structure (murs, planchers) à l'interface desquels il est incorporé soient justifiés.

Pour les modèles de rupteurs ISOKORB® XT type K/D/B/O/H/C/Q/Z/A/F et ISOKORB® T type K/D/B/O/ES/H/C/Q/Z/A/F, ont un classement de capacité portante R, excepté le type Z /ZS qui est non-porteur, d'une étanchéité au feu et d'une isolation au feu EI de :

- 90 minutes lorsque les plaques coupe-feu mises en œuvre sont des plaques AESTUVER de chez FERMACELL (épaisseur 10mm et REI120 pour des plaques épaisseurs 15mm)
- 120 minutes lorsque les plaques coupe-feu mises en œuvre sont des plaques BATIBOARD de chez SITEK INSULATION ou plaques SILLATHERM SPH 135 c/si de chez ISOVER.
- Les balcons en console et les balcons sur appuis réalisés avec des rupteurs Q, D, K et ses déclinaisons C, BH, HV, WO, WU, K-O, K-U peuvent être pris en compte au même titre que des balcons sans rupteurs pour le calcul du C+D.

Pour les autres modèles de rupteurs non-porteurs (T/XT type Z/ZS), le classement R n'a pas été établi mais uniquement le classement EI.

Participation au C+D

Conformément à l'Appréciation de Laboratoire n°AL041283-B délivrée par le CERIB et N°RS16-037B délivrée par le CSTB, les éléments de type K/D/O/ES/H/C/Q/A/F/Z/ZS et QF/QFi participent à l'indice D.

2.3.4. Isolation acoustique en ITE-ITR (ETE 17/0261, §C.4)

Les rupteurs en isolation thermique extérieure ou répartie ne modifiant pas la façade, ils ne modifient pas l'acoustique quant aux bruits aériens de celle-ci. L'ensemble de la gamme en ITE-ITR n'est donc pas concerné par une valeur de $D_{n,e,w}$ lorsqu'ils sont positionnés à l'extérieur des bâtiments.

Vis-à-vis des bruits d'impact, les modèles contribuent à un affaiblissement entre le balcon/coursive et les pièces intérieures par rapport à une solution tout béton du fait de la souplesse relative du rupteur. En fonction de la hauteur et du ferraillage des rupteurs ISOKORB® T/XT type K/Q/D/C/H/Z, des valeurs ΔLw [dB] ont été testées et sont indiquées dans l'ETE 17-0261 chapitre C.4. Elles sont valables pour des rupteurs avec ou sans plaques coupe-feu.

Les valeurs d'affaiblissement de la transmission du bruit d'impact varient entre Δ Lw -6 et Δ Lw -24 dB. Elles peuvent être utilisées dans les calculs acoustiques de la liaison monolithique selon EN ISO 12354-2. (cf Annexe 5 du présent DTA)

2.3.5. Thermique en ITE-ITR

Le calcul du pont thermique Ψ de la liaison en présence des composants SCHÖCK ISOKORB® en ITE ou ITR a été validé par le CSTB, conformément aux règles Th-Bât. Les valeurs Ψ des configurations définies au §2.2.1, les hypothèses ainsi que les

résultats détaillés des calculs réalisés conformément aux règles Th-Bât sont proposés dans les tableaux en Annexe 4. Les valeurs des coefficients de transmission linéique ne sont valables qu'à condition de respecter les limites de validité décrites dans cette Annexe. Le BET Structure peut se baser sur ces valeurs en tenant compte des limites de validité de l'étude.

En dehors de ces limites de validité, un calcul spécifique selon les *Règles Th-Bât* fascicule « ponts thermiques » ou selon la norme *NF EN ISO 10211* doit être réalisé.

Par ailleurs, SCHÖCK France a la capacité d'ajuster les valeurs de calcul du pont thermique de plancher en fonction des conditions aux limites de chaque projet.

Pour ce faire, des simulations seront réalisées selon les normes et méthodes de calculs prévues dans les *Règles Th-Bât* en vigueur pour les calculs liés aux réglementations thermiques, en respectant, selon le contexte dans lequel est réalisé le calcul, certaines règles de modélisation. Ce calcul consiste en une modélisation 3D aux éléments finis réalisée conformément à la norme *NF EN ISO 10211*.

2.3.6. Traitement de l'étanchéité de toitures-terrasses

2.3.6.1. Domaine d'emploi

Le domaine d'emploi du rupteur thermique SCHÖCK ISOKORB® doit être conforme au CPT 3794 (Février 2018) « Règle de conception des toitures-terrasses, balcons et coursives étanchés sur éléments porteurs en maçonnerie munis de procédés de rupteurs de ponts thermiques faisant l'objet d'un Avis Technique »

2.3.6.2. Compatibilité

L'isolant est protégé directement par des plaques coupe-feu silico-calcaires (AESTUVER ou BATIBOARD) ou en laine de roche (SILLATHERM). Ces dernières sont intégrées dans un capot PVC. Les modèles de rupteurs sans élément de protection à la flamme ne peuvent être mis en œuvre en toiture-terrasse. Le complément d'isolation, tel que décrit au § 2.2.2.6, n'est pas autorisé dans le cas des toitures-terrasses.

Tableau 3: Compatibilité du rupteur ISOKORB® dans le cas des toitures-terrasses

Aptes à recevoir un pare-vapeur synthétique en pose libre	OUI
Apte à recevoir un pare-vapeur ou un revêtement d'étanchéité collé à froid	OUI
Apte à recevoir un pare-vapeur ou un revêtement bitumineux auto-adhésif	OUI
Apte à recevoir un pare-vapeur ou un revêtement d'étanchéité bitumineux soudé à la flamme	Voir note ⁽¹⁾
Apte à recevoir un pare-vapeur collé à l'EAC	NON
Apte à recevoir un isolant support d'étanchéité à base de verre cellulaire collé à l'EAC.	NON

⁽¹⁾ L'application directe sur le rupteur n'est pas réputée satisfaisante. Dans ce cas, une bande bitumineuse auto -adhésive doit être préalablement mise en œuvre sur le rupteur en débordant de chaque côté d'au moins 50 mm sur l'élément porteur et/ou le relief. La bande est définie dans les DTA des « revêtements d'étanchéité de toitures en bicouche avec première couche auto-adhésive à base de bitume modifié », comme feuille de première couche en partie courante. Cette bande n'assure pas le rôle d'équerre de continuité du pare vapeur.

2.3.6.3. Prescription de mise en œuvre

2.3.6.3.1. Généralité

La mise en œuvre et la composition du revêtement d'étanchéité, du pare-vapeur, de l'équerre de renfort et de la bande sont décrites dans l'Avis Technique ou Document Technique d'Application du revêtement d'étanchéité, complétées par les prescriptions du CPT 3794 (Février 2018) Règles de conception des toitures-terrasses.

La mise en œuvre des panneaux isolants est décrite dans l'Avis Technique ou Document Technique d'Application du panneau isolant ou suivant les Règles professionnelles « Isolants supports d'étanchéité en indépendance sous protection lourde » de juillet 2021 et « Isolation inversée de toiture-terrasse » de juin 2021.

L'équerre préalable sur le pare-vapeur est suffisamment longue pour dépasser d'au moins 6 cm au-dessus de l'isolation de la toiture et donc du rupteur.

2.3.6.3.2. Enduit d'imprégnation à froid

Lorsqu'il est nécessaire d'appliquer sur le support un Enduit d'Imprégnation à Froid, ce dernier doit être mis en œuvre en partie courante de la toiture sans recouvrir le rupteur thermique. Dans le cas d'Enduit d'Imprégnation à Froid contenant des solvants, les boitiers en PVC des rupteurs doivent être protégés par du ruban adhésif.

2.3.6.3.3. Fixation mécanique en périphérie de toiture

Dans le cas de relevé synthétique, la fixation du revêtement en périphérie de la toiture doit être réalisée :

- Soit au-dessus de l'isolation à au moins 50 mm de distance du rupteur.
- Soit dans le plancher. Auquel cas, l'utilisation de cette possibilité n'est pas visée dans les cas suivants :
 - Locaux à très forte hygrométrie;
 - Planchers de type D au sens du DTU 20.12;
 - o Formes de pente en béton lourd et léger;
 - o Voiles précontraints ou voiles minces préfabriqués ;
 - o Corps creux avec ou sans chape de répartition;
 - o Planchers à chauffage intégré et planchers comportant des distributions électriques noyées.

2.3.6.3.4. Bande auto-adhésive, équerre et pare-vapeur

La bande auto-adhésive est mise en œuvre sur le rupteur et reçoit une équerre de continuité du pare-vapeur soudée.

2.3.6.3.5. Réservation

Les réservations dans le béton (évacuation d'eau pluviale, trop-plein, conduit de cheminée, ventilation mécanique, etc...) sont réalisées par le lot gros œuvre en prévoyant que les fixations mécaniques des manchons/platines métalliques ne peuvent pas se faire dans le rupteur. Celles-ci sont espacées du rupteur de 50 mm minimum.

2.3.7. Traitement de l'étanchéité de balcons, coursives, loggias sur espaces non clos en ITE

En balcons, coursives et loggias sur espaces non clos, la présence d'un complexe d'étanchéité est obligatoire afin d'éviter les entrées d'eau à la jonction du rupteur et de la maçonnerie.

2.3.7.1. Domaine d'emploi

Les rupteurs thermiques SCHÖCK ISOKORB® peuvent être mis en œuvre sur balcons, coursives et loggias sur espaces non clos, étanchés et sur éléments porteurs en maçonnerie munis de procédés de rupteurs de ponts thermiques faisant l'objet d'un Avis Technique.

Le complément d'isolation, tel que décrit au § 2.2.2.6, n'est pas autorisé dans le cas des balcons, coursives, loggias sur espaces non clos en ITE dans le cas des revêtements d'étanchéité bitumineux.

2.3.7.2. Compatibilité

L'isolant est protégé directement par des plaques coupe-feu silico-calcaires (AESTUVER ou BATIBOARD) ou en laine de roche (SILLATHERM). Ces dernières sont intégrées dans un capot PVC. Les modèles de rupteurs sans élément de protection à la flamme ne peuvent être mis en œuvre en toiture-terrasse.

Pour les balcons, coursives, loggias sur espaces non clos en ITE, les revêtements d'étanchéité synthétiques ne sont pas autorisés.

Les configurations autorisées sont mentionnées dans le tableau suivant.

Tableau 4 : Compatibilité du rupteur ISOKORB® dans le cas des balcons, coursives, loggias sur espaces non dos en ITE avec revêtement d'étanchéité bitumineux

Apte à recevoir un revêtement d'étanchéité bitumineux collé à froid	OUI
Apte à recevoir un revêtement d'étanchéité bitumineux auto - adhésif	OUI
Apte à recevoir un revêtement d'étanchéité bitumineux soudé à la flamme	Voir note ⁽¹⁾

⁽¹⁾ L'application directe sur le rupteur n'est pas réputée satisfaisante. Dans ce cas, une bande bitumineuse auto -adhésive doit être préalablement mise en œuvre sur le rupteur en débordant de chaque côté d'au moins 50 mm sur l'élément porteur et/ou le relief. La bande est définie dans les DTA des « revêtements d'étanchéité de toitures en bicouche avec première couche auto-adhésive à base de bitume modifié », comme feuille de première couche en partie courante. Cette bande n'assure pas le rôle d'équerre de continuité du revêtement d'étanchéité.

2.3.7.3. Prescription de mise en œuvre

Dans le cas des dalles sur plots, les plots de rive ne se situent pas au-dessus des rupteurs.

La largeur du rupteur étant supérieure à 50 mm, un système de porte-dalle doit être prévu afin de limiter le risque de porte-à-faux de la dalle.

Figure 14: Balcon en porte-à-faux avec rupteur ISOKORB® T/XT type K:

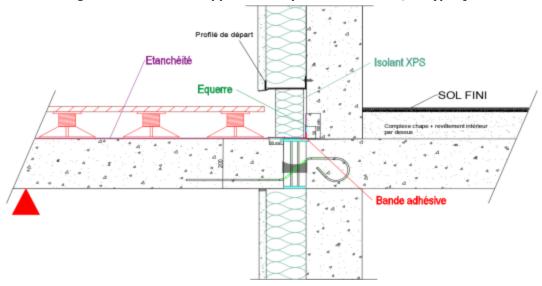
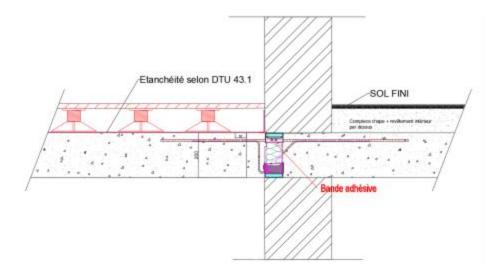



Figure 15 : Balcon sur appuis avec rupteur ISOKORB® T/XT type Q :

2.3.7.4. Cas des revêtements d'étanchéité liquide (S.E.L)

Dans le cas particulier des balcons, coursives et loggias sur espaces non clos étanchés par un Système d'Étanchéité Liquide (S.E.L.), la mise en œuvre des Systèmes d'Étanchéité Liquide sur les rupteurs thermiques SCHÖCK ISOKORB® doit être conforme aux Règles Professionnelles RP « SEL Balcons et planchers sur espaces non clos, juillet 2021 ».

2.3.8. Traitement de l'étanchéité des balcons, coursives, loggias sur espaces non clos en ITR


La mise en œuvre et la composition du revêtement d'étanchéité, de l'équerre de renfort et de la bande sont décrites dans l'Avis Technique ou Document Technique d'Application du revêtement d'étanchéité.

Dans le cas des ITR, la préparation du support se fait conformément au DTU 20.12, au NF DTU 43.1 et aux Règles Professionnelles SEL « Balcons et planchers sur espaces non clos » de la CSFE de juillet 2021.

Les revêtements d'étanchéité admis sont :

- Les revêtements d'étanchéité de type SEL disposant d'une Fiche Système établie selon les Règles Professionnelles SEL
 « Balcons et planchers sur espaces non clos » de la CSFE de juillet 2021, visant l'emploi sur éléments porteurs en maçonnerie, pour le type d'ouvrage visé, en climat de plaine.
- Les revêtements d'étanchéité en bitume modifiés sous DTA, visant l'emploi sur éléments porteurs en maçonnerie, pour des terrasses accessibles aux piétons et séjours sous protection par dalles sur plots, en climat de plaine.
- Les revêtements d'étanchéité synthétiques sous DTA, visant l'emploi sur éléments porteurs en maçonnerie, pour des terrasses accessibles aux piétons et séjours sous protection par dalles sur plots, en climat de plaine.

Figure 16 : Balcon en porte-à-faux avec rupteur ISOKORB® T/XT type K en ITR

2.4. Dispositions de mise en œuvre

Effectuée par les entreprises de bâtiment, la mise en œuvre ne présente pas de difficulté particulière. Les rupteurs sont livrés ferraillés et dimensionnés aux exigences du chantier, prêts à être posés. Néanmoins, l'ordre de mise en place des prédalles en béton et des armatures du plancher et du balcon doit tenir compte de la présence des composants SCHÖCK ISOKORB®. Dans ce but, chaque élément porte une étiquette ou QR-Code sur laquelle figure des instructions de mise en œuvre.

Les plans de calepinage transmis aux utilisateurs doivent faire apparaître niveau par niveau chaque rupteur avec sa référence complète, des coupes montrant les dispositions de ferraillage (à mettre sur chantier) et les détails de mise en œuvre ainsi que le linéaire prévu.

Il est interdit de modifier les rupteurs (notamment de plier/replier les aciers, d'en incorporer ou d'en retirer, etc...), seule une découpe d'ajustement de la longueur du corps isolant peut être opérée.

Les rupteurs sont équipés d'un système tenon/mortaise qui permet un emboitement précis et rapide de façon que les plaques coupe-feu soient alignées bord à bord. Grâce à ce système, l'alignement obtenu garantit le degré coupe-feu du plancher muni de rupteurs et la conformité à l'Avis de Laboratoire, ainsi que la performance thermique à l'interface entre rupteurs adjacents en évitant l'apparition de laitance de béton ou d'eau en cas d'intempéries.

Sur notre site internet, les recommandations de mise en œuvre peuvent être consultées.

La mise en œuvre des rupteurs SCHÖCK ISOKORB® n'exige pas de savoir particulier.

2.4.1. Pose et découpe

Les modèles linéiques s'emboîtent simplement selon un système tenon/mortaise (rainure/languette). Les rupteurs livrés en longueur standard peuvent être simplement découpés par une scie sur place aux dimensions nécessaires suivant le plan de pose fourni.

Les tolérances de pose courante des rupteurs sont à respecter suivant la norme NF EN 13670 (±20mm) comme pour tous les inserts. Cette tolérance concerne également les découpes, qui doivent être conformes aux plans de calepinage. Il n'est pas admis d'écart entre deux rupteurs adjacents. Cette tolérance de pose concerne le premier rupteur sur le plan du plancher. Les autres rupteurs sont mis côte à côte. Les languettes et rainures évitent un passage de béton ou de laitance entre deux rupteurs.

Les formes des isolants sont expansées chez notre fournisseur. Les moules appartiennent à SCHÖCK et le retrait du NEOPOR® est pris en compte dans le coffrage et des moules.

2.4.2. Interface

Les plaques coupe-feu ne doivent à aucun moment être traversées pour le cheminement des gaines techniques. Cela n'interdit pas la traversée horizontale ponctuelle du corps isolant, du moment que les aciers, butons et modules HTE ne sont pas modifiés. La découpe doit être minimale, propre et le trou doit être calfeutré avec un produit isolant après pose de la gaine afin de conserver les performances thermiques.

2.4.3. Prescriptions particulières de mise en œuvre du rupteur ISOKORB® dans des éléments coulés sur place

2.4.3.1. Rupteur Type K

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Poser les modèles K en respectant la dénomination et le sens de pose matérialisé par les flèches (les aciers d'effort tranchant remontent verticalement côté dalle extérieure).
- Poser un acier filant en face des butons de compression et des barres de traction côté balcon.

- Poser les armatures supérieures de la dalle extérieure et intérieure suivant les recommandations du BET Structure.
 Ces aciers sont à aligner et à ligaturer aux aciers du rupteur. Pour certains types, ne pas oublier de poser les armatures en « U » en face des rupteurs.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.
- En présence de prédalles, prévoir un joint de compression coulé sur place d'une largeur de ≥5 cm minimum ou intégrer directement le rupteur dans la fabrication de la prédalle.
- Le type K peut également être posé après avoir ferraillé le balcon et la dalle. Le rupteur devra être ligaturé aux aciers en partie supérieure.
- Le type K peut également être intégré dans un ouvrage préfabriqué.

2.4.3.2. Rupteur Type K-O et K-U

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Le voile inférieur doit respecter l'épaisseur minimale selon les modèles.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les aciers filants au-dessus des butons d'ancrage, tels que décrit en Annexe 3.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Ferraillage de la poutre à définir par le BET Structure pour garantir l'introduction des efforts provenant du rupteur dans cette dernière.
- Poser les modèles K-O/U en respectant la dénomination et le sens de pose matérialisé par les flèches (les aciers d'effort tranchant remontent verticalement côté dalle extérieure).
- Poser un acier filant en face des butons de compression, des barres de tranchant et des barres de traction côté balcon et côté voile.
- Poser les armatures supérieures de la dalle extérieure et intérieure suivant les recommandations du BET Structure.
 Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.
- Le type K-O / K-U peut également être intégré dans un ouvrage préfabriqué.

2.4.3.3. Rupteur Type C

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Poser les modèles C en respectant la dénomination et le sens de pose matérialisé par les flèches.
- Poser les armatures supérieures de la dalle extérieure et intérieure suivant les recommandations du BET Structure et de la société SCHÖCK. Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Ferrailler la dalle intérieure suivant les recommandations du BET Structure.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.3.4. Rupteur Type Q, QF et Q-P

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Poser les modèles Q/QF/Q-P en respectant la dénomination et le sens de pose matérialisé par les flèches (les aciers d'effort tranchant sortent en partie basse de la dalle extérieure).
- Poser les armatures supérieures de la dalle extérieure et intérieure suivant les recommandations du BET Structure.
- Poser les aciers filants de chaque côté du rupteur. Dans le cas d'utilisation de prédalles côté balcon, la prédalle avec ses aciers de suspente doit être réduite au minimum de l'épaisseur du rupteur ou le rupteur doit être intégré directement dans la prédalle lors de la fabrication de cette dernière.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.
- Le type Q, QF, Q-P peut également être intégré dans un ouvrage préfabriqué.

2.4.3.5. Rupteur Type D

- Respecter les instructions de préparation, étaiement, pose et ferraillage du BET Structure ainsi que de la société SCHÖCK.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Poser les modèles D en respectant la dénomination et le sens de pose matérialisé par les flèches.
- Poser les armatures supérieures des dalles côté intérieur et extérieur suivant les recommandations du BET Structure. Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Poser des armatures en « U » de chaque côté du rupteur et des filants pour garantir le positionnement des « U ».
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.3.6. Rupteur Type A

- Respecter les instructions de préparation, étaiement, pose et ferraillage du BET Structure ainsi que de la société SCHÖCK.
- Coffrer la rive de dalle et poser les rupteurs A en respectant l'entraxe entre ces demiers indiqué par le BET Structure ou par la société SCHÖCK.
- Poser les armatures supérieures et inférieures de la dalle et du chaînage suivant les recommandations du BET Structure.
- Couler le béton de la rive de dalle jusqu'à la sous-face du rupteur en veillant à le vibrer soigneusement.
- Combler les vides entre les rupteurs avec de l'isolant.
- Coffrer et ferrailler l'acrotère suivant les recommandations du BET Structure et veiller à positionner les armatures constructives contre la poussée au vide.
- Couler le béton en veillant à le vibrer soigneusement la partie supérieure de l'isolant.
- Le type A peut également être intégré dans un acrotère préfabriqué.

2.4.3.7. Rupteur Type F

- Respecter les instructions de préparation, étaiement, pose et ferraillage du BET Structure ainsi que de la société SCHÖCK.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les rupteurs F en respectant l'entraxe entre ces derniers indiqué par la société SCHÖCK et combler les vides entre les rupteurs avec de l'isolant.
- Poser les armatures supérieures et inférieures de la dalle suivant les recommandations du BET Structure et veiller à positionner les armatures constructives contre la poussée au vide.
- Couler le béton de la dalle jusqu'aux rupteurs en veillant à le vibrer soigneusement.
- Coffrer et ferrailler l'acrotère suivant les recommandations du BET Structure et veiller à positionner les armatures constructives contre la poussée au vide.
- Couler le béton en veillant à le vibrer soigneusement la partie extérieure de l'isolant.

2.4.3.8. Rupteur Type B

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile/poutre au niveau de la sous-face de la poutre traitée.
- Poser les modèles B en respectant la dénomination et le sens de pose matérialisé par les flèches.
- Poser les armatures de la poutre intérieure et extérieure suivant les recommandations du BET Structure. Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.3.9. Rupteur Type W

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Poser les modèles W en respectant la dénomination et le sens de pose matérialisé par les flèches.
- Intégrer les armatures en « U » et les aciers filants verticalement et horizontalement de chaque côté du rupteur.
- Poser les armatures en treillis des voiles intérieures et extérieures suivant les recommandations du BET Structure. Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.3.10. Rupteur Type ES/ESi/H

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.
- Poser les armatures inférieures des dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Poser les modèles ES/ESi/H en respectant la dénomination, la position et le sens de pose matérialisé par les flèches.
- Poser les armatures supérieures de la dalle extérieure et intérieure suivant les recommandations du BET Structure. Ces aciers sont à aligner et à ligaturer aux aciers du rupteur.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.3.11. Rupteur Type Z

- Respecter les instructions de préparation, étaiement, pose et ferraillage de la société SCHÖCK ainsi que du BET Structure.
- Arrêter l'arase supérieure du voile au niveau de la sous-face de la dalle traitée.

- Poser le modèle Z en respectant la dénomination et le sens de pose matérialisé par les flèches.
- Ferrailler les dalles intérieures et extérieures suivant les recommandations du BET Structure.
- Couler le béton en veillant à le vibrer soigneusement des deux côtés de l'isolant.

2.4.4. Prescriptions particulières pour l'intégration de rupteurs thermiques dans des éléments préfabriqués horizontaux (dalles, balcons, auvents, etc...) et verticaux (murs, acrotères, etc...)

Les dispositions de vérification/contrôle de la mise en place des rupteurs thermiques en atelier de préfabrication, ne sont pas différentes de celles qui sont à observer lors de la mise en place de rupteurs de ponts thermiques sur un chantier.

Les prescriptions techniques de ce DTA sont valables aussi bien lors de la mise en œuvre sur chantier qu'en usine de préfabrication

La société SCHÖCK propose également un accompagnement à la conception et à la pose pour former la société de préfabrication aux rupteurs de ponts thermiques SCHÖCK ISOKORB®.

Un Plan d'Assurance Qualité « fabrication de balcon avec rupteur de ponts thermiques SCHÖCK » doit être établi par le préfabriquant et doit contenir à minima les points suivants :

- 1. Conception des produits
- Principe général : La conception d'un élément préfabriqué est à la charge du BET Structures en charge du chantier. Elle se doit de respecter et prendre en compte les exigences suivantes :
 - o Résistance mécanique (charges d'exploitation, poids propre des éléments);
 - Prise en compte des rupteurs de ponts thermiques sous DTA et plus généralement de la réglementation thermique applicable;
 - Sécurité des personnes (NFP 01-012 et 01-013);
 - Accessibilité;
 - Sécurité incendie.
- 2. Responsabilités et échanges d'informations entre les intervenants
- L'élaboration des plans réalisée de manière itérative selon les étapes ci-dessous :
 - o La société SCHÖCK ou le BET structure déterminent les modèles de rupteurs de ponts thermiques en fonction des plans et des coupes en leur possession.
 - Elaboration des plans de coffrage et armatures par le BET Structure en charge du chantier et par le BET Structure du préfabriquant.
 - o Échanges autour des dispositifs de levages et manutention et analyse des plans reçus.
 - □Élaboration des plans de préfabrications.
 - Validation du client du préfabriquant

<u>Focus Rupteur :</u> Lors de ces étapes, l'entièreté des inserts sont indiqués de manière précise sur les plans de préfabrication y compris les rupteurs avec leurs références. Les aciers complémentaires liés à la mise en œuvre du rupteur du balcon sont modélisés. La fiche technique du rupteur est associée au plan de préfabrication. Afin d'anticiper les problématiques des phases de coffrage et transport, les rupteurs sont modélisés avec leur longueur de sortie d'armature précise ce qui permet de vérifier le gabarit routier ainsi que l'emprise au sol du balcon.

- 3. Fabrication
- Les étapes de préparation, classification du béton, fabrication, démoulage et conditions de stockage ne changent pas due à la présence des rupteurs
- 4. Contrôle de production en usine
- L'ensemble des contrôles internes ne changent pas due à la présence des rupteurs.
- 5. Procédure de fabrication et transport
- Préparation des moules et matériels, ferraillage et coffrage : L'agent de préparation met en œuvre la totalité des besoins en matériels pour un premier contrôle qualité des éléments nécessaires à la fabrication.

<u>Focus Rupteur</u>: Les rupteurs sont contrôlés de la même manière que les inserts intégrés dans l'élément préfabriqué. Un point de contrôle particulier est mis en œuvre sur le sens du rupteur, sa bonne référence et sa position. Ces informations sont repérées dans une fiche d'autocontrôle de fabrication.

- Les étapes de contrôle avant coulage, bétonnage ne changent pas due à la présence des rupteurs.
- Décoffrage et stockage de l'élément de préfabrication chez le préfabriquant ne changent pas due à la présence des rupteurs

<u>Focus Rupteur</u>: Lors du décoffrage d'un balcon avec rupteur une attention particulière est mise en place afin d'assurer l'absence de tout élément de coffrage au niveau du rupteur ainsi qu'éviter la présence de tout obstacle lors de cette phase qui viendrait percuter le rupteur ou les aciers saillants.

<u>Focus Rupteur</u>: Lors du calage aucun élément doit venir en contact avec le rupteur. Les aciers saillants de celui-ci doivent être protégés afin d'éviter les risques de coupure.

• Chargement et transport ne changent pas due à la présence des rupteurs

<u>Focus Rupteur</u>: Lors du calage aucun élément doit venir en contact avec le rupteur. Les aciers sortant de celui-ci doivent être protégés afin d'éviter les risques de coupure. En aucun cas les aciers peuvent être tordus pour permettre de rentrer dans un gabarit routier donné.

Les éléments, selon la sortie des aciers sont mis en quinconce pour équilibrer la charge. Lors de l'arrimage, un bois est installé au bord du béton côté rupteur afin que la sangle ne détériore pas le rupteur.

• Déchargement, stockage sur chantier, mise en œuvre sur chantier ne changent pas due à la présence des rupteurs

<u>Focus Rupteur</u>: Le client doit assurer que, lors du calage sur site, aucun élément doit venir en contact avec le rupteur. Les aciers sortant de celui-ci doivent être protégés afin d'éviter les risques de coupure. En aucun cas les aciers peuvent être tordus ou coupés. La pose de la pièce préfabriquée avec rupteur se fait sans conditions particulière autres que les dispositions de ferraillage et bétonnage décrit dans ce DTA. Le ferraillage et le bétonnage du côté appui / dalle se fait selon les plans du BET structure exécution du projet.

6. Contrôle lors de la mise en œuvre de l'élément préfabriqué sur chantier :

Sauf indications contraires mentionnées dans les documents particuliers du marché (DPM), les éléments préfabriqués doivent être réglés afin de les placer tel que prévu lors de la conception et selon les tolérances définies dans le NF EN 13747 et la NF DTII 21

Il s'agira de réaliser ce réglage, de manière dépendante :

- Perpendiculairement au plan du mur ;
- Longitudinalement;
- De hauteur ;
- De l'horizontalité (inclinaison si une contre-flèche est lors de la conception).
- Positionnement des armatures du rupteur avec les armatures de la dalle intérieure

Les tolérances de mise en œuvre à respecter sont comme ceux des éléments préfabriqués horizontaux, différentes de celles d'un élément coulé sur place.

La pose de l'élément préfabriqué avec son rupteur intégré est conforme aux plans d'exécution. La tolérance de pose est prise égale à 20mm (NF DTU 21).

Un exemple de fiche d'autocontrôle est proposé en annexe 6.

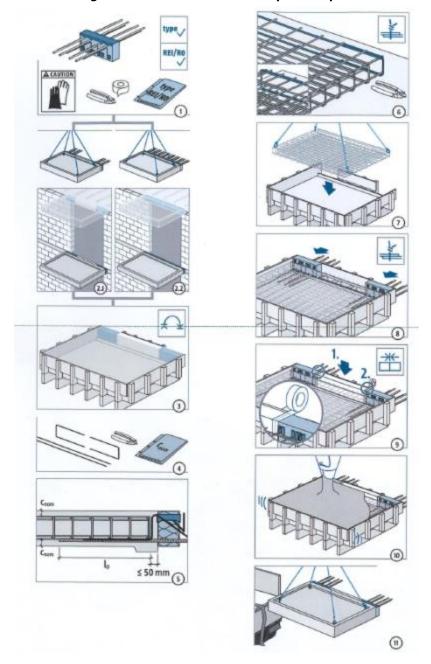


Figure 17 : Eléments de balcons préfabriqués

2.4.5. Autres utilisations

2.4.5.1. Utilisation avec plancher à prédalles

Les planchers à prédalles doivent être dimensionnés conformément au NF DTU 23.4. Des suspentes sont à prévoir au droit des rupteurs thermiques.

Lors de la pose de rupteurs en cas de plancher à prédalles, en plus des prescriptions données aux paragraphes ci-dessous qui dépendent du type de mur, il convient de s'assurer que la contre-flèche des prédalles ne gêne en rien le positionnement horizontal des rupteurs.

La cinématique de pose des rupteurs non intégrés dans la prédalle est la suivante :

- Étaiement des prédalles : les prédalles suspendues ne peuvent reposer sur les rives. L'étaiement doit être prévu en conséquence, en respectant les instructions du fabricant de prédalle.
- Pose des prédalles selon les instructions du fabricant, y compris dépliage des suspentes suivant la solution retenue;
- Pose des rupteurs le long des prédalles ;
- Pose du ferraillage complémentaire ;
- Coulage du béton.

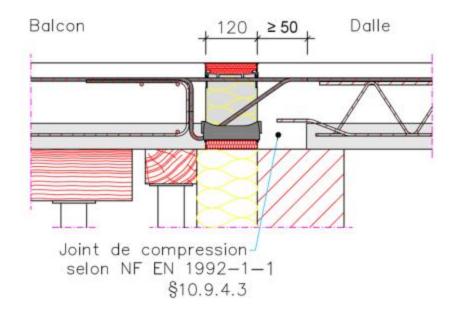


Figure 18 : Utilisation du rupteur avec prédalles

Par analogie au NF DTU 23.4, §6.3.3, le principe de la mise en œuvre des planchers suspendus sur un support préfabriqué est précisé et décrit dans le FD P 18-720. Dans ce cas, le rupteur de pont thermique est posé entre le ferraillage de l'élément préfabriqué et le support, et la distance mesurée entre les suspentes et le nu extérieur du rupteur doit être inférieure à :

- 45 mm si l'élément préfabrique est bloqué à une seule extrémité
- 65 mm si l'élément préfabrique est bloqué aux deux extrémités.

Dans le cas d'un balcon, il est majoritairement bloqué à une seule extrémité.

2.4.5.2. Utilisation sur maçonnerie de petits éléments

L'utilisation de rupteurs avec la maçonnerie de petits éléments ne se distingue pas des dispositions de mise en œuvre décrites ci-dessus.

liaison dalle/balcon CSP

Figure 19 : Rupteur mis en œuvre dans un ouvrage en maçonnerie Modèle: K Isolation Extérieure

Extérieur
Balcon PAF

Chaînage selon BE

Barre d'acier > Ø 8mm

Peau de Coffrage

Ferraillage du balcon selon B.E.

2.4.5.3. Utilisation sur MCI/MCII

Dans la plupart des cas, la dalle et le balcon sont alignés, les prescriptions de mise en œuvre ne se distingu ent donc pas des dispositions décrites ci-dessus.

Joint mastic polyuréthane

Solin

Etanichilirà

Joint mastic polyuréthane

Rupteur de pont thereique

Repteur de pont thereique

extérieur

Figure 20 : Schémas de principe MCI

2.5. Principes de fabrication et de contrôle

2.5.1. Processus de fabrication

La fabrication des rupteurs SCHÖCK ISOKORB® est exclusivement faite par la société Schöck BAUTEILE GmbH. Dans le cadre de sa démarche qualité, la société SCHÖCK exerce, entre autres, un contrôle strict de sa production et de ses composants conforme au plan de qualité interne et externe.

Les isolants thermiques $NEOPOR^{(8)}$ sont contrôlés par l'ACERMI et à réception selon le cahier des charges fournisseur. D'autre part, la société SCHÖCK réalise dans son laboratoire des essais de conductivité thermique 4 fois par an.

Conformément aux recommandations d'autocontrôle définies dans l'ETE 17/0261 (07 septembre 2022), un plan de contrôle suivant le schéma 1+ est effectué régulièrement.

Les sites de production des SCHÖCK ISOKORB® sont indiqués dans l'ETE 17/0261.

2.5.2. Assurance qualité

Étant donné son engagement, la société Schöck BAUTEILE GmbH a obtenu plusieurs certifications, dont les certifications environnementales et certifications qualité suivantes : ISO 9001, ISO 14001, ISO 45001 et ISO 50001.

2.6. Livraison, stockage et traçabilité

Les éléments sont livrés sur palettes, généralement directement sur le chantier concerné. Ils ne nécessitent d'aucune protection contre les intempéries.

Chaque bon de livraison et chaque facture contiennent une codification permettant de définir la date de fabrication, l'équipe de montage intervenue ainsi que la chaîne de fabrication concernée, permettant ainsi une traçabilité complète de chaque élément. Seules les références et la quantité nécessaire à la réalisation du chantier sont livrées.

2.7. Commercialisation et assistante technique

2.7.1. Commercialisation

La dénomination commerciale française des rupteurs est SCHÖCK ISOKORB®. Ces mêmes produits sont également commercialisés dans d'autres pays sous les dénominations ISOKORB®.

La commercialisation s'effectue en direct ou par le biais de spécialistes sélectionnés par le titulaire.

Les éléments sont livrés sur palettes, généralement directement sur le chantier concerné. Ils ne nécessitent d'aucune protection contre les intempéries.

Chaque bon de livraison et chaque facture contiennent une codification permettant de définir la date de fabrication, l'équipe de montage intervenue ainsi que la chaîne de fabrication concernée, permettant ainsi une traçabilité complète de chaque élément. Seules les références et la quantité nécessaires à la réalisation du chantier sont livrées.

2.7.2. Identification

Depuis la dernière révision de l'Avis Technique, le système de dénomination du système SCHÖCK ISOKORB® a été mis à jour. La désignation des différents types respecte une structure rigoureuse. L'ordre des composants reste toujours le même.

- 1) Marque du produit : SCHÖCK ISOKORB®
- (2) Modèle: Modèle « T » ou modèle « XT »
- ③Type: Le type résulte de la combinaison du type de base et de la variante :
 - Type de base
 - o Variante dite « statique », selon le type de sollicitations à reprendre
 - o Variante dite « géométrique », selon la géométrie des ouvrages à reprendre
 - o Variante de « réalisation », selon le mode constructif adopté

Type de base				
K	Balcon, Auvent – en porte-à-faux	Α	Acrotère, garde-corps, bandeau	
Q	Balcon, Auvent – sur appui (effort tranchant)	В	Poutre	
С	Balcon d'angle	W	Mur de refend	
Н	Balcon avec charges horizontales	F	Acrotère, garde-corps - avancé	
Z	Balcon avec isolation intermédiaire	0	Console, bandeau	
D	Plancher en continuité			

Variante géométr			
L	Disposition à gauche		
R	Disposition à droite		
U	Décalage vers le bas ou raccord mural		
0	Décalage vers le haut ou raccord mural		

	/ariante statique	de	rac	cordement
I	_	Linéai	re	
I)	Ponctuelle		
	1/		-1-	

variante réalisation		de
F	Prédalle	
i	CSP	

4 Niveau de performance : Il regroupe les niveaux de charge et de protection incendie. Les différents niveaux de charge d'un rupteur sont numérotés, en commençant par 1 pour le niveau de charge le plus faible. Les différents types de rupteurs

d'un même niveau de charge n'ont pas la même capacité de charge. La résistance du rupteur aux charges est calculée au moyen de tableaux de l'Annexe 2.

Le niveau de charge se compose comme suit :

- Niveau de charge principale : combinaison de la sollicitation et d'un nombre (1 étant la valeur minimale et signifiant la plus faible performance).
- Niveau de charge secondaire : combinaison de la sollicitation et d'un nombre (1 étant la valeur minimale et signifiant la plus faible performance).

	Résistance aux charges principales - Sollicitations							
М	Moment							
MM	Moment avec une force positive et négative							
V	Effort tranchant							
VV	Effort tranchant avec une force positive et négative							
N	Effort normal							
NN	Effort normal avec une force positive et négative							
Ré	sistance à la sollicitation aux charges secondaires - Sollicitations							
V	Effort tranchant							
VV	Effort tranchant avec une force positive et négative							
N	Effort normal							
NN	Effort normal avec une force positive et négative							

La désignation de la protection incendie est composée de la classe de résistance au feu ou R0 si aucune protection incendie n'est exigée.

Classe de résistance au feu									
REI xxx	R - Résistance, E – Etanchéité, I – Isolation thermique, xxx - minutes								
R0	Aucune résistance structurelle au feu								

(5) **Dimensions :** Les dimensions se composent des éléments nominatifs suivants :

- Enrobage en béton des aciers CV (ex CV30, CV35 ou CV50)
- Profondeur de l'ancrage LR et hauteur d'insertion HR
- Epaisseur d'isolant : X
- Hauteur ISOKORB®: H
- Longueur ISOKORB®: L
- Largeur ISOKORB® B

2.7.3. Assistance technique

Pour l'assistance technique, la société SCHÖCK met à disposition son bureau d'ingénierie interne capable d'intervenir à chaque phase du projet (aussi bien en conception qu'en réalisation). Le dimensionnement des éléments est réalisé par le titulaire sur la base des sollicitations transmises par le bureau d'études structure du projet, en collaboration avec le BET Thermique du projet.

Le plan de calepinage est réalisé par le titulaire.

Les plans d'exécution avec l'intégration des rupteurs (plan de coffrage, plan de ferraillage, ...) sont réalisés par le bureau d'études structure de l'opération.

Sur demande, la supervision de la pose des éléments peut être assurée par un représentant de la société SCHÖCK.

2.8. Mention des justificatifs

2.8.1. Résultats expérimentaux

2.8.1.1. Structure

- Essais de résistance à la compression des butons à calottes sphériques effectués par "l'Institut pour Massivbau et Bautechnologie" de l'Université de Karlsruhe (Décembre 1985).
- Essais de résistance des soudures entre les barres d'acier de qualités différentes: acier inoxydable V 4 A et acier béton BST 42 P/500 effectués par "Versuchsanstalt pour Stahl, Holz et Steine" de l'Université de Karlsruhe (Mars 1984)
- Essais de résistance sur des éléments ISOKORB® modèle K, effectués par "l'Institut pour Massivbau et Bautechnologie" de l'Université de Karlsruhe (une série en Juin 1984, une autre en Novembre 1984).

- Compte-rendu " Rupteurs de ponts thermiques SCHÖCK ISOKORB® ". Note de calcul de R&D KP1 du 24.05.2004 avec lettre N. Réf JP.P/Co040906 de R&D KP1.
- Procès-verbal d'étude Homologation pour appuis ISOKORB® (appellation allemande du ISOKORB®) béton à très haute résistance; MPA Bau TU München; 14.05.2002.
- Procès-verbal d'expertise appuis ISOKORB® en béton à haute résistance de la Société SCHÖCK; Prof. Heinz, TU München, 14.05.2002.
- Procès-verbal d'essai de déplacement avec appui en béton SCHÖCK; MPA Stuttgart; 24.05.2002.
- Procès-verbal d'essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB[®] KX 14/12 Q10 avec appuis en béton SCHÖCK (module HTE). Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 06.12.2002.
- Procès-verbal d'essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 14/10 Q6 avec appuis en béton SCHÖCK (module HTE). Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 17.12.2002.
- Rapport d'expertise Modification et extension du brevet général délivré par le Service de Contrôle des Constructions Z-15.7-86.2 Elément SCHÖCK- ISOKORB® avec parlier de butée en béton (module HTE). Prof. Eibl + Partner GBR, Karlsruhe, 03.03.2003.
- Procès-verbal d'essai de fatigue et essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 12/10 Q8 avecappuis en béton SCHÖCK; Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 21.03.2003.
- Procès-verbal d'essai de fatigue et essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 12/10 Q6 avecappuis en béton SCHÖCK; Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 22.03.2003.
- Procès-verbal d'essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 14/10 Q6 avec appuis en béton SCHÖCK; Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 26.06.2003.
- Procès-verbal d'essai statique de mise en charge sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 14/10 Q10 avec appuis en béton SCHÖCK; Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 23.06.2003.
- 10 Procès-verbal d'essais KX14 Druck 16-1 bis 35-2S. Essai statique de mise en charge pour définir l'effort de compression maximal transmissible sur un élément SCHÖCK ISOKORB® avec appuis en béton; R&D SCHÖCK AG Baden-Baden, 13.12.2004.
- Expertise concernant la demande d'extension du brevet de l'élément SCHÖCK ISOKORB® avec palier de poussée en béton Z-15.7-86.2 pour une application en corrélation avec la norme DIN 1045; Prof. Graubner, TU Darmstadt, 21.12.2004.
- Procès-verbal d'essai statique de flèche sur une dalle de béton armé en porte-à-faux munie de l'élément SCHÖCK ISOKORB® KX 12/10 avec appuis en béton SCHÖCK; Construction en dur Technologie des matériaux de construction, TU Karlsruhe, 10.03.2003.
- Étude NECS Justification de la tenue mécanique des rupteurs SCHÖCK ISOKORB® sous diverses actions concomitantes – 11.2013.
- ETE 17/0261 du 07.09.2022
- ETE 17/0262 du 20.01.2021
- ETE 17/0261 du 02.06.2023
- DEE n°050001-00-0301 Février 2018 + DEE n°050001-01-0301 17.12.2021
- Expertise SMP du 5.11.2015 extension distance joint de fractionnement traduction en français

2.8.1.2. Feu

- Essai de résistance au feu sur rupteurs de ponts thermiques de balcon (RS 06-167).
- Essai de résistance au feu des rupteurs refend-façade (RS98-054).
- Essai de résistance au feu des rupteurs dalle-façade (RS07-075 et RS07-132).
- Appréciation de laboratoire CSTB RS16-037B.
- PV CERIB 029909 et AL 029908.
- PV CERIB 034939 et AL 034940.
- Extension PV CERIB 041284-A et AL 041283-A : Isolant complémentaire ZS.
- Extension PV CERIB 041284-B et AL 041283-B.

2.8.1.3. Thermique

- Calculs des ponts thermiques de liaisons avec rupteurs SCHÖCK ISOKORB® de type K, Q et A. Etude CSTB, DER/HTO 2013 294 RB/LS, 13-066 du 10.10.2013.
- Validation des calculs des ponts thermiques de liaisons avec rupteurs thermiques SCHÖCK ISOKORB® en ITE du CSTB n° DEB/R2EB-2022-155-KZ-NA/NZ du 12.09.2022.
- Calculs de majorations des ponts thermiques de liaisons avec rupteurs thermiques SCHÖCK ISOKORB® utilisés en ITR du CSTB n° DEB/R2EB-2023-010-KZ/EH du 24.01.2023.

2.8.1.4. Sismique

- SCHÖCK ISOKORB[®], Analyse de la résistance au séisme des rupteurs thermiques pour balcons. Dynamique Concept, Paris, 10.1.2007.
- Calcul sismique de balcons équipés de rupteurs thermiques SCHÖCK. Elément Q40, épaisseur 25. RT Conseil, Jacob Bellecombette, 5.2.2007.
- SCHÖCK ISOKORB®: Transfert d'accélérations aux extrémités des balcons. Dynamique Concept, 26.02.2008.
- SCHÖCK ISOKORB®: Analyse de la résistance au séisme de rupteurs thermiques pour balcons selon l'EC8 et généralisation pour tout type de bâtiment sans limite de hauteur ou de régularité. Dynamique Concept, Paris, 25.02.2013.
- Étude NECS Justification de la tenue mécanique des rupteurs SCHÖCK ISOKORB® sous diverses actions concomitantes 09.2013.
- Rapports d'essais nº 18-0274-1 à 18-0274-5 5 Essais selon DEE clause A.2 16.01.2019
- Rapport d'étude n° 1814500274 Karlsruhe (D), Validation calculs rigidité 23.01.2019
- Rapport d'étude SCHÖCK Evaluation des composants ISOKORB® traduit en français 15.01.2021
- Rapports d'essais n° V17093-TLV1 / V17093-TLV2 Essais selon DEE clause A.3 03.08.2017
- Rapports d'essais n° V17114-TLV3 Essais selon DEE clause A.3 04.11.2017
- Rapports d'essais n° V17116-TLV4 Essais selon DEE clause A.3 20.11.2017
- Modélisation SCHÖCK ISOKORB® T/XT Type H 5.1 index B traduit en français 25.03.2022
- Rapport d'étude SMP A1600095-3, Karlsruhe (D) Comparaison modèle essais DEE traduit en français -13.03.2019
- Rapport d'évaluation DIBT ETA 17-0261 en anglais 19.07.2022

2.8.2. Références chantiers

Le premier Avis Technique de SCHÖCK ISOKORB® en France date de 1988. Depuis, plus de 1500 projets ont été exécutés en France avec la gamme ISOKORB® en ITE/ITR.

	Localisation	Chantier	Entreprise	Typologie Structure	Туре
92	Vanves	165 logts	Bouygues IDF 78280 Guyancourt	Préfa / balcon traditionnel	K + ATEX étanchéité
92	Issy les Moulineaux	Fort d'Issy	CBC 78781 Vélizy Villacoublay	Balcon traditionnel	K/K-WO/Q6-x/D/Q (type K/K-O/QF/D/Q)
92	Issy les Moulineaux	Fort d'Issy	Bouygues IDF 78280 Guyancourt	Balcon traditionnel	К
75	Paris 17ème	Lot 04	Bouygues IDF 78280 Guyancourt	Balcon traditionnel	K/K-Eck/Q+Q/Q/Q6-x Type K/C/Q-VV/Q/QF
75	Paris 17ème	Lot 06	LEON GROSSE 78000 Versailles	Balcon traditionnel	К
59	Lille	ВІОТОРЕ	BOUYGUES BATIMENT NORD EST 59651 Villeneuve d'Ascq	Préfa (auvent) + balcon/coursives tradi	K/K-VV/K-BH/Q/Q+Q/Z/ESi Type K/K-U/Q/Q-VV/Z/ESi
68	Colmar	EHPAD Saint Gilles	CLB CONSTRUCTION LUCCHINA BASSO 68920 Wintzenheim	Balcon traditionnel	K-BH/K-WO/K/Q+Q/ESi/Q6-x Type K/K-U/K-O/Q/Q- VV/ESi/QF

ANNEXE 1: Espacement maximal entre joints de fractionnement

Les espacements maximaux entre joints de fractionnement ont été déterminés selon une série d'essais conformes au DEE 050001-01-0301 et au rapport d'évaluation de l'ETE concerné (exemple ETE 17/0261 §B.2.1).

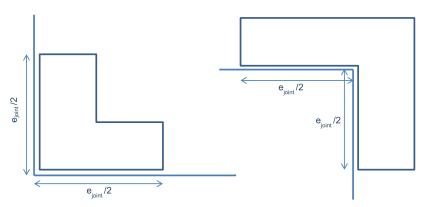
Les dispositions de la norme FD P 18-717 § 2.3.3 (3) concerne une liaison monolithique et ne doivent pas s'appliquer à une liaison par rupteur thermique.

Les espacements ont été calculés pour un taux de travail de 100%.

Ces valeurs ne sont valables que si l'intégralité de la liaison est traitée avec les rupteurs de ponts thermiques. Les bandes noyées monolithiques éventuelles sont à considérer comme des points fixes.

Pour écarter le risque de fatigue de la liaison avec des rupteurs de ponts thermiques SCHÖCK ISOKORB®, il faut respecter les distances entre les joints de fractionnement des éléments extérieurs en saillie ci-dessous. Indépendamment des joints de fractionnement des éléments extérieurs (balcon, acrotère, auvent, etc.) liaisonnés avec les rupteurs ISOKORB®, les distances entre les joints de dilatation du bâtiment selon les Eurocode et les Annexes nationales doivent être respectées.

joints de	eurs maximales entre les Fractionnement pour une seur d'isolant de 80 mm	e [m]																	
Diamètre de la barre inoxydable de traction dans l'isolant			Ø ≤ 9,5		Ø = 10		Ø = 11		Ø = 12		.2	Ø = 14		.4	Ø = 16		.6		
r = Qk/Gk			0,7 ≥ r > 0,3	0,3≥r≥0	1 ≥ r > 0,7	$0,7 \ge r > 0,3$	0,3 ≥ r ≥ 0	$1 \ge r > 0,7$	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0	1 ≥ r > 0,7	$0,7 \ge r > 0,3$	0,3 ≥ r ≥ 0	$1 \ge r > 0,7$	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0	1 ≥ r > 0,7	$0,7 \ge r > 0,3$	0,3 ≥ r ≥ 0
Longueurs maximales entre les joints de fractionnement [m]			13,5	11,7	11,7	10,9	9,2	11,1	10,3	8,7	10,6	9,8	8,3	9,8	9,1	7,7	9,2	8,6	7,2
Туре	Variante																		
. , , , ,	M1-M6 (V1-V2)		Х																
К	M6 (V3-VV1)-M11					X													
	M12-M14											X							
K-O	M1-M4					Х													
K-U	M1-M4					X													
-	M1		X																
C	C M2-M3														X				
D	MM1-MM5											X							
MM6															X				
QF	V1-V6		Х																
QFi	V1-V6		X																


Longueurs maximales entre les joints de fractionnement pour une épaisseur d'isolant de 80 mm	e [m]							
Diamètre de la barre inoxydable de tranchant dans l'isolant	Ø ≤ 9,5	Ø = 10	Ø = 12	Ø = 14				
Longueurs maximales entre les joints de fractionnement [m]	11,0	10,6	9,5	8,3				
Туре		Va	riante					
Q	V1-V6 VV1-VV6	V7-V8 VV7-VV8	V9-V11 VV9-VV11	V12 VV12				
Q-P	V1-V3 VV1-VV3	V4-V5 VV4-VV5	V6-V7 VV6-VV7	V8-V10 VV8-VV10				

joints de f	urs maximales entre les fractionnement pour une ur d'isolant de 120 mm	e [m]																	
Dian inoxyo	Ø ≤ 9,5			Ø = 10		Ø = 11		Ø = 12		Ø = 14		4	Ø = 16		6				
r = Qk/Gk		1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3≥r≥0	1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0	1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0	1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0	1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3≥r≥0	1 ≥ r > 0,7	0,7 ≥ r > 0,3	0,3 ≥ r ≥ 0
	Longueurs maximales entre les joints de fractionnement [m]		23,0	23,0	21,7	21,4	18,0	20,6	20,0	16,9	19,8	18,9	15,9	18,3	17,1	14,4	16,9	15,8	13,3
_																			
Туре	Variante																		
	M1-M6 (V1-V3)		X																
K	M6 (VV1)-M10					X													
	M11-M13											Х							
K-O	M1-M4					Х													
K-U	M1-M4					X													
С	M1-M2											X							
D	MM1-MM5											X							
D	D MM6														X				

Longueurs maximales entre les joints de fractionnement pour une épaisseur d'isolant de 120 mm	e [m]						
Diamètre de la barre inoxydable de tranchant dans l'isolant	Ø ≤ 9,5	Ø = 10	Ø = 12	Ø = 14			
Longueurs maximales entre les joints de fractionnement [m]	20,6	19,5	17,7	15,3			
Туре		Varia	inte				
Q	V1-V5 VV1-VV5	V 6 -V9 V V 6-VV9	V10 VV10	V11 VV11			
Q-P		V 1 - V 3 V V 1 - VV 3	V 4 - V 5 V V 4 - V V 5	V6-V10 VV6-VV10			

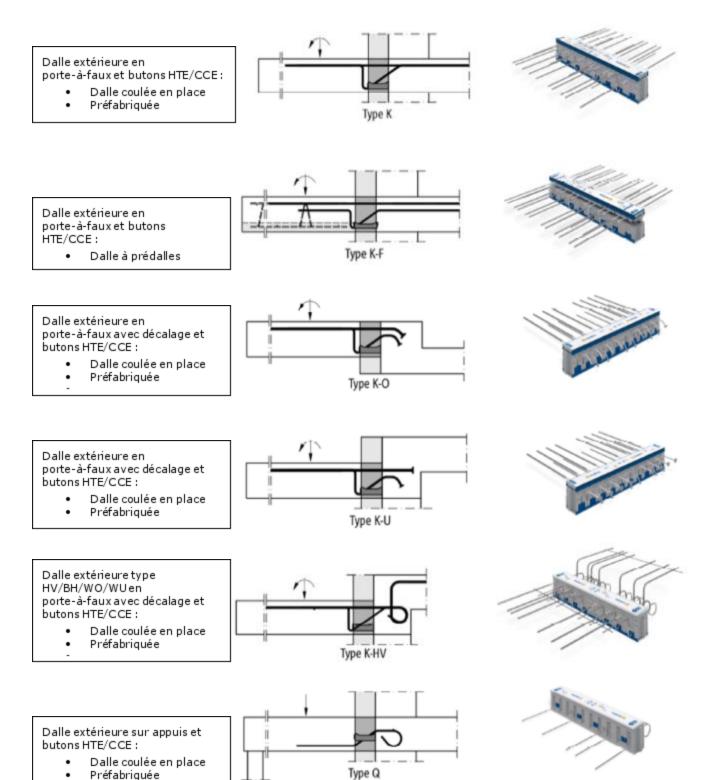
Longueurs maxima fractionnement	e [m]*	
Epaisseur de l'isolant	80	8,0 ou 12,0
[mm]	120	8,0 ou 12,0

^{*}Selon les dispositions du DTU 20.12.

Définition e_{joint} dans le cas d'un balcon d'angle :

En limitant l'espacement des joints de fractionnement dans le cadre de l'ITE-ITR, même si le calcul laisse entrevoir une contrainte théorique très élevée, les essais réalisés conformément au DEE avec un delta T=70 K montrent que les barres ont

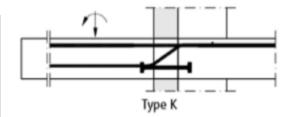
un comportement menant à des contraintes demeurant dans la zone élastique du matériau. Les modules de compression suivent la dilatation et ne sont pas soumis à une contrainte de traction et à une vérification à la fatigue.


L'ouvrage extérieur, sans échange thermique avec l'intérieur du bâtiment n'est pas gêné par les effets de la différence de température entre l'extérieur et l'intérieur. Le ferraillage des éléments extérieurs (balcon/acrotère/loggia) à considérer d'une façon systématique correspond à la section d'armatures minimale des éléments extérieurs n'est autre que celle prévue dans les normes NF EN 1992-1-1 et FD P18-717, à savoir :

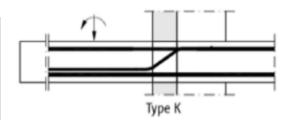
- Pour tout élément de longueur inférieure ou égale à 6 m dans les régions humides et tempérées et 4 m dans les régions sèches : 0,17 % de la section de béton, pour des aciers de limite d'élasticité égale à 500 MPa et pour un béton de classe de résistance C25/30 ou plus ;
- Pour tout élément de longueur supérieure ou égale à 12 m dans les régions humides et tempérées et 8 m dans les régions sèches : 0,42 % de la section de béton, pour des aciers de limite d'élasticité égale à 500 MPa et pour un béton de classe de résistance C25/30 ou plus ;
- Pour tout élément de longueur intermédiaire, le pourcentage peut être obtenu par interpolation linéaire sur la longueur.

Pour les éléments d'acrotère en béton armé, la section d'armatures transversales entre joints est conforme au DTU 20.12 §7.2.4, en fonction des espacements maximal entre joints (8 m en régions sèches, 12 m en régions humides et tempérées).

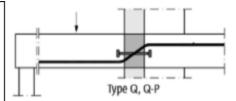
ANNEXE 2 : Modèles SCHÖCK ISOKORB® en ITE/ITR(Sommaire et extraits de l'ETE 17/0261)


1. Configurations avec modules de compression (HTE / CCE)

1. Configurations avec des butons ou armatures en acier

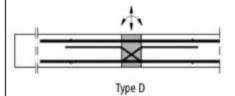

Dalle extérieure type K/KF en porte-à-faux et butons de compression en acier :

- Dalle coulée en place
- Préfabriquée

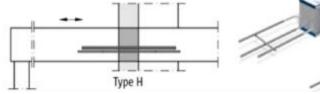

Dalle extérieure type K/KF en porte-à-faux et aciers de compression :

- Dalle coulée en place
- Préfabriquée

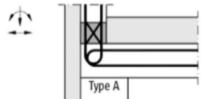
Dalle extérieure sur appuis et butons de compression en acier ou en béton :


Dalle coulée en place

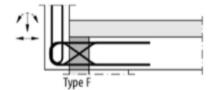
Dalle extérieure en continuité et aciers de compression :


- Dalle coulée en place
- Préfabriquée

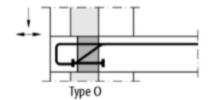
Complément pour charges horizontales (armatures en traction/compression) :


- Dalle coulée en place
- Préfabriquée

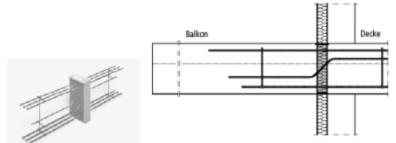
Acrotère, garde-corps ou bandeau :

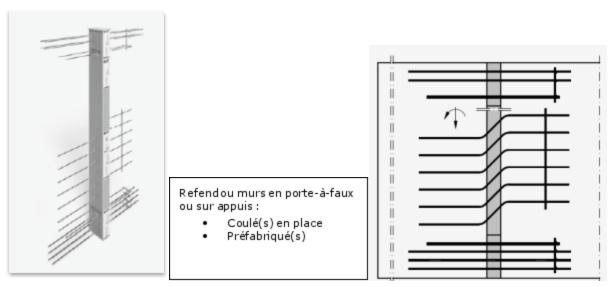

- Coulé en place
- Préfabriqué

Acrotère ou garde-corps :


- Coulé en place
- Préfabriqué

Console ou bandeau:


- Coulé en place
- Préfabriqué

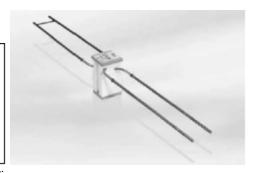


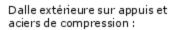
Poutre ou éléments d'appuis ponctuels en porte-à-faux :

- Coulé(s) en place Préfabriqué(s)

Type B

Type W


Types de rupteurs hors ATE :


Complément : Type Z/ZS (sans armatures)

Complément pour charges horizontales (armatures en traction/compression) :

 Coulé en place ou Préfabriqué

Effort horizontal : Type ES/ESi

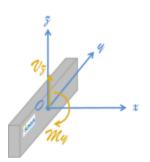
 Coulé en place ou prédalle

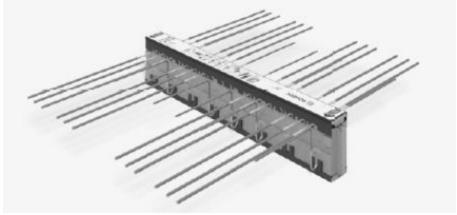
Type QF / QFi

ANNEXE 3 : Modèles et valeurs de calculs des rupteurs ISOKORB® de la gamme T et XT en ITE – ITR

ISOKORB® T/XT Type K Page 51
ISOKORB® T/XT Type K-O et K-U Page 66
ISOKORB® T/XT Type C Page 81
ISOKORB® T/XT Type D Page 89
ISOKORB® T/XT Type Q Page 106
ISOKORB® T/XT Type Q-P (ponctuel) Page 119
ISOKORB® T/XT Type H/ES Page 128
ISOKORB® T/XT Type A Page 134
ISOKORB® T/XT Type F Page 138
ISOKORB® T/XT Type P Page 141
ISOKORB® T/XT Type B Page 144
ISOKORB® T/XT Type W Page 145
ISOKORB® T/XT Type W Page 145
ISOKORB® T/XT Type Z/ZS Page 151

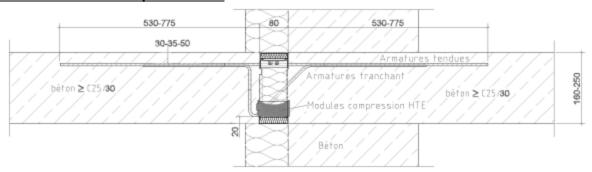
Les pages en annexe donnent des détails sur les modèles les plus courants en isolation extérieure. Toutes les valeurs données sont les valeurs de calcul (Rd) au sens de l'Eurocode 0.

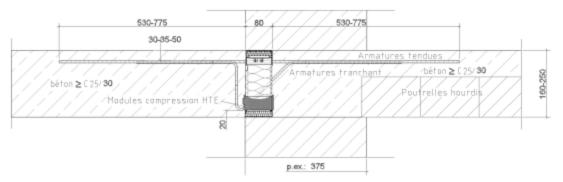

ISOKORB® T/XTType K


Liaisons dalle-balcon

Le type K ou K-F est destiné à assurer la continuité linéique de l'isolation dans le plan vertical au droit d'un élément en porte-à-faux (balcon ou casquette). Il permet de transmettre des efforts tranchants et des moments négatifs depuis l'élément en porte-à-faux vers l'appui. Les armatures de compression sont constituées de modules de compression HTE ou butons métalliques SCE. Il peut être équipé de plaques coupe-feu AESTUVER®, BATIBORD® ou en laine minérale prises dans un profilé PVC.

Les types K existent dans la gamme T en épaisseur d'isolation de 80 mm et dans la gamme XT en épaisseur d'isolation de 120 mm.


Pour les détails de traitement d'étanchéité, se reporter au paragraphe §2.3.6 à §2.3.8



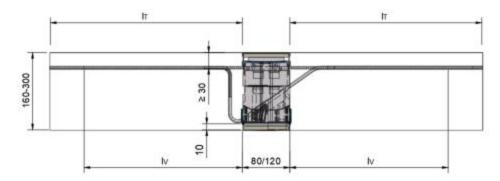
Vue complète du type K (Exemple : T Type K-M4-V1)

Utilisation en dalle coulée sur place en ITE :

<u>Utilisation en dalle sur poutrelle hourdis en ITR (prévoir hourdis négatifs et ferraillage assurant la reprise des efforts) :</u>

Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression soient pris dans le béton frais.

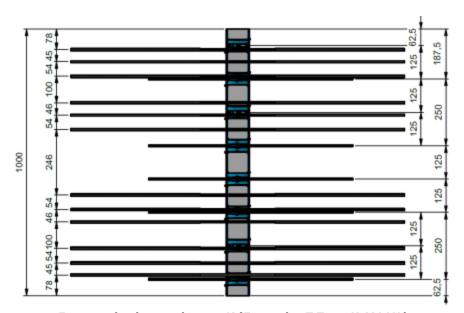
ISOKORB® T Type K


Valeurs de résistances du T Type K pour un béton ≥C25/30

Schöck ISOKORB®® T1	Гуре	K			M1	M2	МЗ	M4	M5	М6			
						Lor	igueur de l	'ISOKORB®® [m	nm]				
Assemblage / Composition					1000	1000	1000	1000	1000	1000			
	V1/V	V1/V2			4 Ø 8	8 Ø 8	10 Ø 8	12 Ø 8	14 Ø 8	15 Ø 8			
Armatures de traction	V3				-	-	10 Ø 8	12 Ø 8	14 Ø 8	7 Ø 12			
	VV1				-	-	-	14 Ø 8	15 Ø 8	8 Ø 12			
	V1				4 Ø 6	4 Ø 6	5 Ø 6	5 Ø 6	5 Ø 6	5 Ø 6			
Armatures pour l'effort	V2				4 Ø 8	4 Ø 8	5 Ø 8	5 Ø 8	5 Ø 8	5 Ø 8			
tranchant	٧3				ı	-	8 Ø 8	8 Ø 8	8 Ø 8	8 Ø 8			
	VV1				-	-	-	4 Ø 8 + 4 Ø 8	4 Ø 8 + 4 Ø 8	4 Ø 8 + 4 Ø 8			
	/2			4	6	7	8	7	8				
	V3				-	-	8	8	8	10			
Modules de compression HTE	VV1				-	-	-	11	12	13			
	Haut [mm		u modu	ile HTE	20	20	20	V1 à V3 : 20 VV1 : 30	30	30			
Armatures spécifiques	VV1				-	-	-	-	-	4			
Schöck ISOKORB® T Ty	ре К				M1	M2	МЗ	M4	M5	М6			
			age du	béton									
		CV [n		T	M	Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN							
		CV30	CV35	CV50	7.5	147	10.2	22.0	25.1	26.0			
		160	160	180	-7,5 -7,9	-14,7 -15,5	-19,2 -20,3	-22,9	-25,1	-26,8 -28,5			
		100	170	100	-8,4	-15,5	-20,3	-24,3 -25,6	-26,6 -28,2	-30,2			
		170	170	190	-8,8	-10,4	-21,5	-23,0	-29,8	-30,2			
		170	180	190	-9,3	-18,1	-23,8	-28,4	-31,4	-33,6			
		180	100	200	-9,7	-18,9	-25,0	-29,8	-33,0	-35,2			
		100	190	200	-10,1	-19,8	-26,2	-31,2	-34,6	-37,0			
		190		210	-10,6	-20,6	-27,3	-32,6	-36,2	-38,7			
			200		-11,0	-21,5	-28,6	-34,0	-37,9	-40,5			
Hauteur de l'ISOKORB®	® µ	200		220	-11,5	-22,3	-29,7	-35,4	-39,5	-42,2			
[mm]	- 11		210		-11,9	-23,2	-31,0	-36,9	-41,1	-44,0			
		210		230	-12,3	-24,0	-32,2	-38,3	-42,7	-45,7			
			220		-12,8	-24,9	-33,4	-39,7	-44,4	-47,5			
		220		240	-13,3	-25,8	-34,6	-41,1	-46,1	-49,2			
			230		-13,8	-26,6	-35,9	-42,6	-47,8	-51,0			
		230		250	-14,2	-27,5	-37,1	-44,1	-49,4	-52,8			
			240		-14,7	-28,4	-38,3	-45,4	-51,1	-54,6			
		240			-15,1	-29,2	-39,6	-46,8	-52,8	-56,4			
			250		-15,6	-30,1	-40,9	-48,1	-54,4	-58,2			
		250			-16,0	-31,0	-42,1	-49,5	-56,0	-60,0			
	Effor	t trancha	ant résist	ant de cal	cul à l'ELU	$v_{Rd,z}$ [kN/m]						
	32,5	32,5	40,6	40,6	40,6	40,6							
Variante d'effort tranchant	V2	57,7	57,7	72,1	72,1	72,1	72,1						
variance a enorch anchant				V3	-	-	115,4	115,4	115,4	115,4			
				VV1	-	-	-	±57,7	±57,7	±57,7			

Schöck ISOKORB®® T Ty	уре К				M7	М8	М9	M10	М	11			
						Lo	ongueur de l'	ISOKORB®®	[mm]				
Assemblage / Composition	า				1000	1000	1000	1000		00			
	V1/\	V2			8 Ø 12	9 Ø 12	10 Ø 12	12 Ø 12	13 (ў 12			
Armatures de traction	VV1				9 Ø 12	10 Ø 12	11 Ø 12	12 Ø 12		Ø 12			
	V1				6 Ø 8	7 Ø 8	7 Ø 8	8 Ø 8		Ø 8			
A II . CC	V2				8 Ø 8	8 Ø 8	8 Ø 8	9 Ø 8		-			
Armatures pour l'effort tranchant	V3				-	-	-	-		-			
	VV1				7 Ø 8 + 4 Ø 8	7 Ø 8 + 4 Ø 8	7 Ø 8 + 4 Ø 8	8 Ø 8 + 4 Ø 8	8 Ø 8 -	+ 4 Ø 8			
			11	12	16	18	1	8					
			-	-	-	-		-					
Modules de compression HTE				16	17	16	18	1	8				
	ı modu	le HTE	30	30	30	30	3	0					
Armatures spécifiques VV1	[mm 1				4	4	4	4	4	1			
Schöck ISOKO		ТТу	ре К		М7	M8	М9	M10	M11	M11			
			<u> </u>			Class	se de héton >			Classe de béton ≥			
					Classe de béton \geq C25/30 béton \geq C30/37								
			age du CV [mm]		١	Moment ré	ésistant de ca	ılaıl à l'FLU	$m_{\scriptscriptstyle Rd,v}$ [kN.m/i	ml			
		CV30	CV35	CV50	•	''J							
			160		-31,2	-35,0	-38,8	-46,4	-46,4	-48,3			
		160		180	-33,2	-37,2	-41,3	-49,2	-49,2	-51,3			
			170		-35,2	-39,5	-43,8	-52,1	-52,1	-54,3			
		170		190	-37,2	-41,7	-46,2	-55,0	-55,0	-57,3			
			180		-39,3	-44,0	-48,8	-57,8	-57,8	-60,3			
		180		200	-41,3	-46,3	-51,3	-60,7	-60,7	-63,2			
			190		-43,3	-48,6	-53,8	-63,5	-63,5	-66,2			
		190		210	-45,3	-50,8	-56,3	-66,4	-66,4	-69,2			
			200		-47,4	-53,2	-58,9	-69,3	-69,3	-72,2			
Hauteur de l'ISOKORB®©	® H _	200		220	-49,5	-55,4	-61,4	-72,1	-72,1	-75,2			
[mm]			210		-51,6	-57,8	-64,0	-75,0	-75,0	-78,2			
	_	210		230	-53,6	-60,1	-66,5	-77,9	-77,9	-81,1			
			220		-55,8	-62,5	-69,2	-80,7	-80,7	-84,1			
	_	220		240	-57,8	-64,8	-71,7	-83,6	-83,6	-87,1			
			230		-60,0	-67,2	-74,3	-86,4	-86,4	-90,1			
		230		250	-62,0	-69,5	-76,9	-89,3	-89,3	-93,1			
		2.15	240		-64,2	-71,9	-79,6	-92,2	-92,2	-96,1			
		240	250		-66,3	-74,2	-82,1	-95,0	-95,0	-99,0			
					-68,5	-76,7	-84,8	-97,9	-97,9	-102,0			
	250 Eff	ort trans	hant =ć	-70,6	-79,0	-87,4	-100,7	-100,7	-105,0				
	EII	or t tranc	ľ			$U v_{Rd,z}$ [kN/m		120.0	120.0				
	V1	86,5	101,0	101,0	115,4	129,8	129,8						
Variante d'effort tranchant	t			V2 VV1	115,4 101,0/-	115,4 101,0/-	115,4 101,0/-	129,8 101,0/-	115,4/-	115,4/-			
				V V I	57,7	57,7	57,7	57,7	57,7	57,7			

Schöck ISOKORB® T Type K				M12	M13	M14				
				Longue	eur de l'ISOKORB®®	[mm]				
Assemblage / Composition				500	500	500				
Armatures de traction				6 Ø 14	7 Ø 14	8 Ø 14				
Butons de compression SCE				5 Ø 16	-	-				
Armatures de compression				-	6 Ø 16	7 Ø 16				
	V1			3 Ø 10	3 Ø 10	3 Ø 10				
Armatures pour l'effort tranchant	V2			3 Ø 12	3 Ø 12	3 Ø 12				
cranenanc	V3			3 Ø 14	3 Ø 14	3 Ø 14				
	V1-CV	/30/CV3	5	180	180	180				
	V2-CV	/30/CV3	5	190	190	190				
H_{min} [mm]	V3-CV	/30 / V1-	-CV50	200	200	200				
	V3-CV	/30 / V2-	-CV50	210	210	210				
	V3-CV	′ 50		220	220	220				
Valeurs de résistance pour	Enr	obage d CV [m		$M_{ m Rd, y}$ [kN.m/élément]						
valears de resistance pour	CV30	CV35	CV50		Ra,y Littini, Giornione	.				
		180		-29,9	-43,3	-50,5				
	180		200	-31,7	-45,4	-53,0				
		190		-33,5	-47,6	-55,5				
	190		210	-35,3	-49,7	-58,0				
		200		-37,1	-51,9	-60,6				
	200		220	-38,9	-54,1	-63,1				
		210		-40,7	-56,2	-65,6				
Hauteur de l'ISOKORB®® H	210		230	-42,5	-58,4	-68,1				
[mm]		220		-44,3	-60,6	-70,7				
	220		240	-46,1	-62,7	-73,2				
		230		-47,9	-64,9	-75,7				
	230		250	-49,7	-67,1	-78,2				
		240		-51,6	-69,2	-80,8				
	240			-53,4	-71,4	-83,3				
		250		-55,2	-73,5	-85,8				
	250			-57,0	-75,7	-88,3				
			$V_{Rd,z}$ [1	<n td="" élément]<=""><td></td><td></td></n>						
		V1	72,4	72,4	72,4					
Variante d'effort tranchant			V2	104,3	104,3	104,3				
			V3	142,0	142,0	142,0				


Vue de détail :

Longueurs des barres gamme T :

		Longueurs	minimales
Schöck ISOKORB® T Type K	$l_{\scriptscriptstyle T}$ (mm)	l_V (mm)	
	Ø	Ø	
	V1		364
N41 NG ()/1 ()/2)	VI	585	Ø6
M1 - M6 (V1/V2)	V2 /V2 /V//	Ø8	476
	V2/V3/VV1		Ø8
MC()/2()/()/() M11	V4 042 042 0 044	725	476
M6(V3/VV1) - M11	V1/V2/V3/VV1	Ø12	Ø8
	V1		633
	VI		Ø10
M12 M14	V2	850	719
M12 - M14	V2	Ø14	Ø12
	\/2		832
	V3		Ø14

<u>Vue en plan :</u>

Entraxe des barres du type K (Exemple : T Type K-M4-V1)

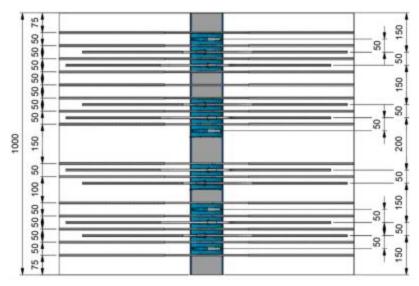
<u>Déformation (flèche complémentaire suivant §2.3.2.4.3)</u>

Schöck ISOKORB® T Type K		M1-M5, M6-V1/V2		M6-V	3/VV1 M11	, M7-	M12			M13-M14			
		CV30	CV35	CV50	CV30	CV35	CV50	CV30	CV35	CV50	CV30	CV35	CV50
Facteurs de déformation							tan	a [%]					
	160	0,9	0,9	ı	1,2	1,2	-	ı	ı	ı	ı	-	-
	170	0,8	0,8	-	1,0	1,0	-	ı	ı	ı	1	-	-
	180	0,8	0,8	0,9	0,9	0,9	1,1	1,2	1,3	-	1,5	1,6	-
	190	0,7	0,7	0,8	0,9	0,9	1,0	1,1	1,2	-	1,4	1,4	-
Hauteur de l'ISOKORB® H	200	0,6	0,6	0,7	0,8	0,8	0,9	1,0	1,0	1,2	1,3	1,3	1,5
[mm]	210	0,6	0,6	0,7	0,7	0,7	0,8	0,9	1,0	1,1	1,2	1,2	1,4
	220	0,6	0,6	0,6	0,7	0,7	0,8	0,8	0,9	1,0	1,1	1,1	1,3
	230	0,5	0,5	0,6	0,6	0,6	0,7	0,8	0,8	0,9	1,0	1,1	1,2
	240	0,5	0,5	0,5	0,6	0,6	0,7	0,7	0,8	0,8	1,0	1,0	1,1
	250	0,5	0,5	0,5	0,6	0,6	0,6	0,7	0,7	0,8	0,9	0,9	1,0

ISOKORB® XT Type K

Valeurs de résistances du XT Type K pour un béton ≥C25/30

Schöck ISOKORB	® XT T	уре К	M1	M2	М3	M4	M5			
				Longue	ır de l'ISOKORB					
Assemblage / Compo	sition		1000	1000	1000	1000	1000			
	V1/V2		4 Ø 8	7 Ø 8	10 Ø 8	12 Ø 8	13 Ø 8			
Armatures de traction	V3		-	-	-	12 Ø 8	13 Ø 8			
daction	VV1		-	-	12 Ø 8	14 Ø 8	15 Ø 8			
	V1		4 Ø 6	4 Ø 6	4 Ø 6	5 Ø 6	5 Ø 6			
Armatures pour	V2		4 Ø 8	4 Ø 8	5 Ø 8	5 Ø 8	5 Ø 8			
l'effort tranchant	V3		-	-	-	8 Ø 8	7 Ø 8			
	VV1		-	_	4 Ø 8 + 4 Ø 8	4 Ø 8 + 4 Ø 8	4 Ø 8 + 4 Ø 8			
	V1/V2		4	6	7	8	7			
	V3		-			8	7			
Modules de	VV1		-	-	8	8	12			
compression HTE	Hauteu				V1 et V2 : 20	V1 à V3 :20				
	module [mm]	HTE	20	20	VV1:30	VV1:30	30			
Armatures spécifique			-	_	_	_	_			
, ii iii daa da ah aa ii qaa	Enroba	ge du			I		I			
Valeurs de résistance	béton	_	Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle V}}$ [kN.m/m]							
valeurs de l'esistance	CV [mr	CV50	•	nu, c						
	160	CV30	-8,3	-14,1	-19,7	-23,5	-23,9			
	100	100	-8,9	-15,0	-19,7	-25,0	-25,5			
	170	180	-9,4	-15,8	-21,0	-26,4	-23,3			
	170	190	-10,0	-16,8	-22,2	-20,4	-27,0			
	180	190	-10,5	-10,6	-23,5	-27,3	-30,1			
	160	200	-11,1	-18,6	-26,0	-30,6	-31,8			
	100	200	-11,6	-19,4	-20,0	-30,0	-31,8			
	190	210	-11,0	-19,4	-27,1	-31,9	-33,2			
	200	210	-12,7	-20,4	-28,3	-34,6	-34,9			
Hauteur de l'ISOKORB®H [mm]	200	220	-13,4	-21,3	-31,1	-34,0	-38,2			
	210	220	-13,9	-23,1	-32,2	-37,3	-39,6			
	210	230	-14,6	-24,2	-33,7	-38,7	-41,4			
	220	230	-15,1	-25,0	-34,8	-40,0	-42,9			
	220	240	-15,8	-26,2	-36,2	-41,4	-44,8			
	230	240	-16,3	-27,0	-37,4	-42,7	-46,2			
	230	250	-17,0	-28,1	-38,6	-44,1	-48,1			
	240	230	-17,5	-29,0	-39,8	-45,4	-49,6			
	250		-17,3	-31,0	-39,8	-43,4	-49,0			
	230	Effort to	ranchant résista		L	70,1	32,3			
		V1	26,3	26,3	26,3	32,9	32,9			
		V2	46,8	46,8	58,5	58,5	58,5			
Variantes d'effort tra	nchant		-	-	-	93,6	81,9			
		V3	_		±46,8					
		VV1	-	_	±46,8	±46,8	±46,8			


Schöck ISOKO	RB®® X	Г Туре К	М6	M7		М	8		M9		M10
A - / C				Loi	ngueui	r de l'IS	OKORB®	®® [m	ım]		
Assemblage / Con	nposition		1000	1000		1000		1000	0	10	00
	V1/	/2	15 Ø 8	8 Ø 12	2	9 Ø	12	12 Ø 12			13 Ø 12
Armatures traction	de V3		15 Ø 8	-		-		-			=
ti detion	VV1		8 Ø 12	9 Ø 12	2	11 Ø	12		-		-
	V1		5 Ø 6	6 Ø 8	}	7 Ø	8 (9 Ø 8		9 Ø 8
Armatures po	our V2		5 Ø 8	8 Ø 8	}	9 Ø	8 0		10 Ø 8		10 Ø 8
l'effort tranchant	V3		8 Ø 8	-		-			-		-
	VV1		4 Ø 8 + 4 Ø 8	3 6 Ø 8 + 4	Ø 8	7 Ø 8 +	4 Ø 8		-		-
	V1/	/2	8	11		1	2		18		18
	V3		8	-		-			-		-
	de VV1		13	15		1	7		=		-
compression HTE	Hau mod [mn	lule HTE	30	30		3	0		30		30
Armatures spécific	que VV1		4	4		4			4		4
Schöck ISOKORI	B® XT 1	уре К	M6	M7	М8		М9			М1	.0
Valeurs de résistance pour CV [mm] CV35 CV50		Classe de béton ≥ C25/30							Classe de béton ≥ C30/37		
		CV50	Moment résis	stant de calcu	ıl à l'El	$LU m_{Rd y}$	[kN.m/	m]			
	160		-27,4	-31,9		5,7	-46,		-46,4		-50,2
		180	-29,3	-34,0	-3	8,1	-49,	2	-49,2		-53,3
	170		-30,9	-36,0	-4	0,3	-52,	1	-52,1		-56,4
		190	-32,8	-38,2	-4	2,8	-55,	0	-55,0		-59,4
	180		-34,5	-40,2	-4	5,0	-57,	8	-57,8		-62,5
		200	-36,4	-42,5	-4	7,5	-60,7 -60,7			-65,6	
	190		-38,1	-44,5	-4	9,8	-63,	5	-63,5		-68,7
		210	-40,0	-46,8	-5	2,3	-66,	4	-66,4		-71,8
Hauteur de l'ISOKORB®®	200		-41,7	-48,8	-5	4,6	-69,	3	-69,3		-74,9
H [mm]		220	-43,7	-51,1	-5	7,2	-72,	1	-72,1		-78,0
. ,	210		-45,4	-53,1	-5	9,4	-75,	0	-75,0		-81,1
		230	-47,4	-55,5	-6	2,1	-77,	9	-77,9		-84,2
	220		-49,1	-57,5	-6	4,3	-80,	7	-80,7		-87,3
		240	-51,2	-59,9	-6	7,0	-83,	6	-83,6		-90,4
	230		-52,9	-62,0	-6	9,3	-86,	4	-86,4		-93,5
		250	-55,0	-64,4	-7	2,0	-89,	3	-89,3		-96,6
	240		-56,7	-66,4	-7	4,3	-92,	2	-92,2		-99,7
	250		-60,6	-70,6	-7	9,3	-97,	9	-97,9		-105,9
Effort tranchant re	ésistant d	le calcul à l'I	ELU $v_{Rd,z}$ [kN/m	n]							
		V1	32,9	70,2	8:	1,9	105,	.3	105,3		105,3
Variante d'effort to	ranchart	V2	58,5	93,6	10	5,3	117,	.0	117,0		117,0
variante d'enort ti	ancilant	V3	93,6	-		-	-		-		-
		VV1	±46,8	70,2/-46,8	81,9	/-46,8	-		-		-

Schöck ISOKO	RB®® XT	Туре К	M11	M12	M13			
			Loi	ngueur de l'ISOKORB®® [m	m]			
Assemblage / Cor	nposition		500	500	500			
Armatures de trac	tion		6 Ø 14	7 Ø 14	8 Ø 14			
Butons de compre	ession SCE		5 Ø 16	-	-			
Armatures de con	npression		-	6 Ø 16	7 Ø 16			
	V1		3 Ø 10	3 Ø 10	3 Ø 10			
Armatures pour l'effort tranchant	V2		3 Ø 12	3 Ø 12	3 Ø 12			
	V3		3 Ø 14	3 Ø 14	3 Ø 14			
	V1-CV35		180	180	180			
	V2-CV35		190	190	190			
H_{min} [mm]	V3-CV35 CV50	/ V2-	210	210	210			
	V1-CV50		200	200	200			
	V3-CV50		220	220	220			
Valeurs de	Enrobage CV [mm]	e du béton		Classe de béton ≥ C25/30				
résistance pour CN	CV35	CV50	$M_{Rd,y}$ [kN.m/élément]					
	180		-28,0	-40,4	-47,2			
		200	-29,7	-42,5	-49,5			
	190		-31,3	-44,5	-51,9			
		210	-33,0	-46,5	-54,3			
	200		-34,7	-48,5	-56,6			
		220	-36,4	-50,6	-59,0			
Hauteur de l'ISOKORB®® H	210		-38,1	-52,6	-61,3			
[mm]		230	-39,8	-54,6	-63,7			
	220		-41,5	-56,6	-66,1			
		240	-43,1	-58,6	-68,4			
	230		-44,8	-60,7	-70,8			
		250	-46,5	-62,7	-73,1			
	240		-48,2	-64,7	-75,5			
	250		-51,6	-68,7	-80,2			
			$V_{{\scriptscriptstyle R} d,\! z}$ [kN/éléme	nt]				
		V1	51,7	51,7	51,7			
Variante d'effort t	ranchant	V2	80,8	80,8	80,8			
		V3	109,6	109,6	109,6			

Longueurs des barres gamme XT :

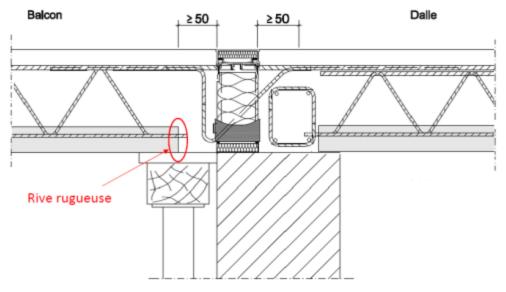
		Longueurs	minimales
Schöck ISOKORB® XT Type K		$\mathit{l}_{\scriptscriptstyle T}$ (mm)	$\mathit{l}_{\scriptscriptstyle{V}}$ (mm)
		Ø	Ø
	V1		364
	VI		Ø6
	V2		476
M1 - M6-V3		502	Ø8
141 - 140-43	V3	Ø8	476
			Ø8
	VV1		476
			Ø8
M6-VV1 - M10	\\1 \\12 \\12 \\13	725	476
MO-441 - MIO	V3	Ø12	Ø8
	V1		555
	VI		Ø10
M11 - M13	V2	850	725
1111 - 1113	V Z	Ø14	Ø12
	V2		825
	V3		Ø14

<u>Vue en plan :</u>

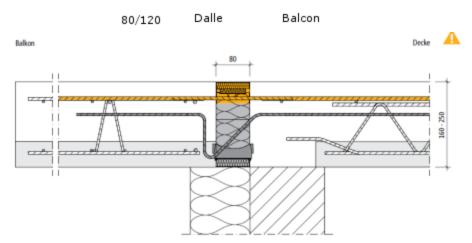
Entraxe des barres du type K (Exemple : XT Type K-M5-VV1)

Déformation (calcul de la flèche complémentaire suivant §2.3.2.4.3)

Schöck ISOKO	RB® XT Type K	M1-	-M6	M7-	M10
Early de d'Generalie		CV35	CV50	CV35	CV50
Facteurs de déformation			tan a	a [%]	
	160	1,1	-	1,4	=
	170	1,0	-	1,2	-
	180	0,9	1,1	1,1	1,3
	190	0,9	1,0	1,0	1,1
Hauteur de l'ISOKORB® H [mm]	200	0,8	0,9	0,9	1,0
Hauteur de 1130KOKB° H [IIIIII]	210	0,7	0,8	0,8	1,0
	220	0,7	0,8	0,8	0,9
	230	0,6	0,7	0,7	0,8
	240	0,6	0,7	0,7	0,8
	250	0,6	0,6	0,7	0,7
Schöck ISOKORB® XT Type K		M11 M12-M13			
Early de d'Conseille		CV35	CV50	CV35	CV50
Facteurs de déformation			tan a	a [%]	
	180	1,4	-	1,6	1
	190	1,2	-	1,5	=
	200	1,1	1,3	1,3	1,5
Hautaur da HICOKODD® H [mmm]	210	1,0	1,2	1,2	1,4
Hauteur de l'ISOKORB® H [mm]	220	0,9	1,0	1,2	1,3
	230	0,9	1,0	1,1	1,2
	240	0,8	0,9	1,0	1,1
	250	0,7	0,8	1,0	1,0

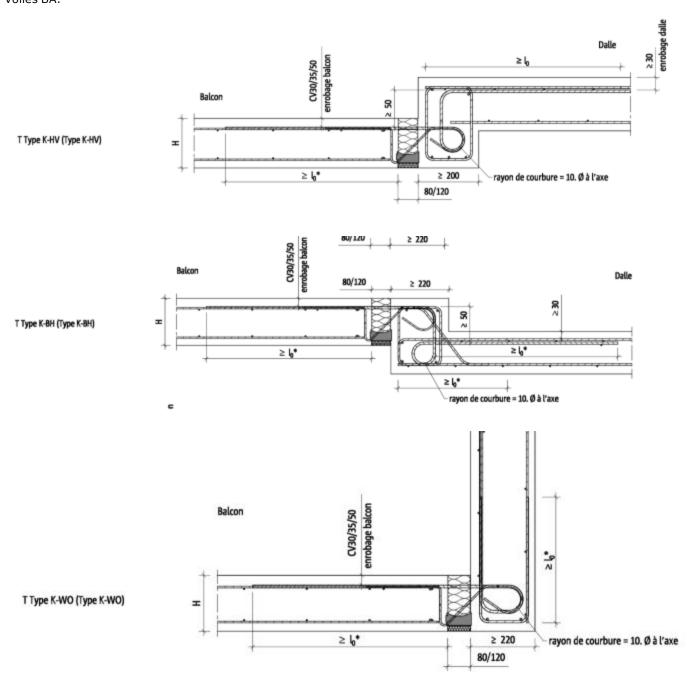

ISOKORB® T/XT Type KF -complément-

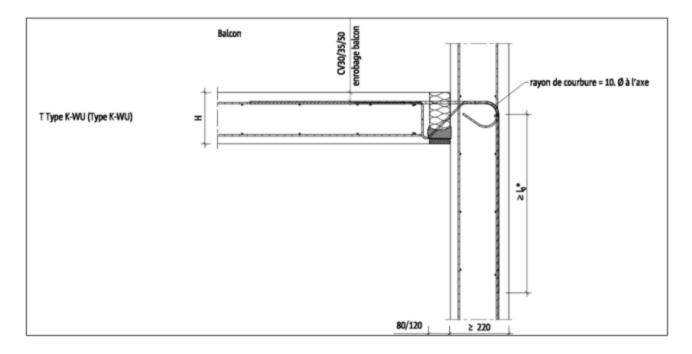
<u>Utilisation gamme T/XT type K avec prédalle extérieure et/ou intérieure :</u>

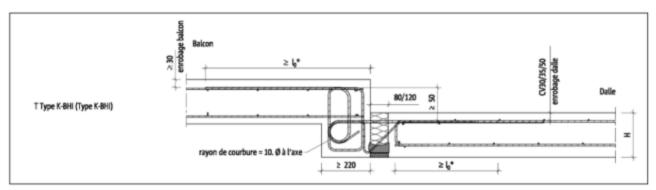

Les prédalles utilisées en balcon doivent systématiquement être munies d'armatures de couture et la rive de la prédalle côté balcon doit être rugueuse de façon à assurer la continuité des efforts de compression.

Les rupteurs ISOKORB® T/XT type KF, également sous ETE, sont destinés à être intégrés dans les prédalles. Les rupteurs T/XT Type KF sont identiques aux modèles K. La partie basse et la partie haute ne sont pas collées en usine et sont à assembler sur chantier. Les tableaux de résistantes pour le modèle T/XT Type K peuvent être utilisés pour le modèle T/XT Type KF.

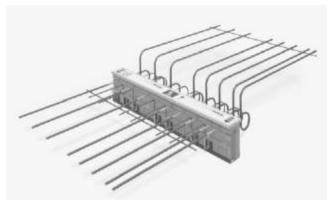
Le détail ci-dessous montre l'utilisation du Type KF avec des prédalles avec une solution en ITR ou ITE.


Utilisation du modèle K avec prédalles (exemple ITR)




Utilisation du modèle K-F, en plusieurs parties, avec prédalles (exemple ITE)

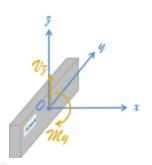
Variantes possibles du type K (vues en coupe ; les valeurs d'utilisation du modèle K s'appliquent) :


Les modèles de types K-HV, K-WO, K-WU, K-BH, K-BHI et K-U et K-O (détaillés dans la section suivante) sont destinés à des liaisons de balcons décalés (vers le haut ou vers le bas) par rapport à la dalle pleine intérieure, ou aux balcons ancrés dans des voiles BA.

*lo=longueur de recouvrement selon NF EN 1992-1-1

Vue complète du type K-HV

 $\textit{Vues en plan des variantes du type K (les valeurs d'utilisation du mod\`ele K s'appliquent):} \\$

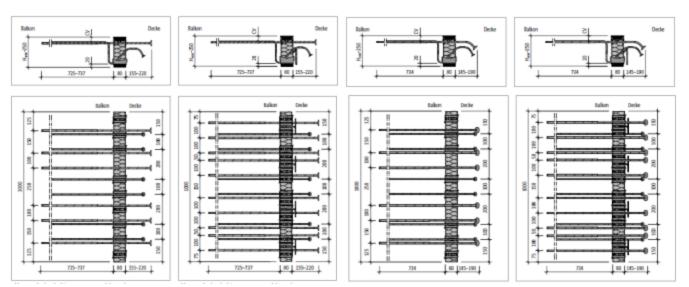

ISOKORB® T/XT Type K-O et K-U

Liaison dalle-balcon en porte-à-faux avec un décalage

Les types K-O et K-U sont destinés à assurer la continuité linéique de l'isolation dans le plan vertical au droit d'un élément en porte-à-faux (balcon ou casquette) avec un décalage important. Il permet de transmettre des efforts tranchants et des moments négatifs depuis l'élément en porte-à-faux vers l'appui. Les armatures de compression sont constituées de modules de compression HTE. Il peut être équipé de plaques coupe-feu AESTUVER®, BATIBORD® ou en laine minérale prises dans un profilé PVC.

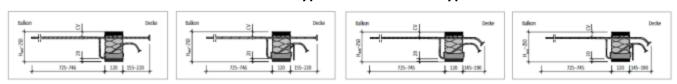
Les types K-O et K-U existent dans la gamme T en épaisseur d'isolation de 80 mm et dans la gamme XT en épaisseur d'isolation de 120 mm.

Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.



Vue complète du type K-O (Exemple : T Type K-O-M3-V1)

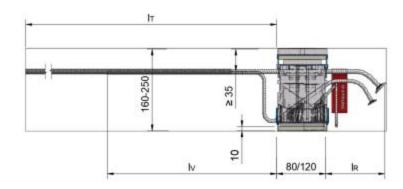
ISOKORB® T/XT Type K-U (peut remplacer le K-WO et

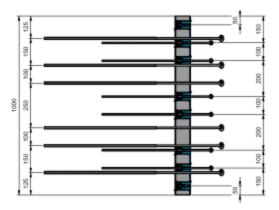

K-HV)

K-BH)

Coupe et vue en plan du type K-U-M2 et K-U-M4 et K-O-M2 et K-O-M4

ISOKORB® XT Type K-U ISOKORB® XT Type K-O




ISOKORB® T Type K-O

Valeurs de résistances du T Type K-O pour un béton C25/30

Schöck ISOKORB®® TT	ype K-(0		M1	M2	М3	M4
A					Longueur de l'IS	SOKORB®® [mm]	
Assemblage / Compositio	n			1000	1000	1000	1000
Armatures de traction				4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12
Armatures d'ancrage				4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10
Armatures diagonales				4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8
Modules de compression l	НТЕ			6	8	10	16
Hauteur du module HTE [mm]			30	30	30	30
Armatures spécifiques				-	-	-	4
		bage du CV [mm				outre ≥ 175 mm voile ≥ 175 mm	
	CV30	CV35	CV50	Mome	ent résistant de cal	cul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle y}}$ [kN	l.m/m]
		160		-15,9	-23,6	-30,4	-38,8
	160		180	-16,9	-25,1	-32,2	-41,3
		170		-18,0	-26,6	-34,1	-43,8
	170		190	-19,0	-28,1	-36,0	-46,2
		180		-20,1	-29,7	-37,8	-48,8
Hauteur de l'ISOKORB®®	180		200	-21,1	-31,2	-39,7	-51,3
H [mm]		190		-22,2	-32,8	-41,6	-53,8
	190		210	-23,3	-34,3	-43,5	-56,3
		200		-24,4	-35,9	-45,3	-58,9
	200		220	-25,4	-37,5	-47,2	-61,4
		210		-26,5	-39,1	-49,1	-64,0
	210		230	-27,6	-40,7	-51,0	-66,5
		bage du CV [mm			Largeur de la p Epaisseur du v	outre ≥ 190 mm voile ≥ 190 mm	
	CV30	CV35	CV50	Mome	ent résistant de cal	cul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle y}}$ [kN	l.m/m]
		220		-28,7	-42,3	-52,8	-69,2
Hauteur de l'ISOKORB®®	220		240	-29,8	-43,8	-54,7	-71,7
H [mm]		230		-30,9	-45,3	-56,6	-74,3
	230		250	-32,0	-46,8	-58,4	-76,9
Valeurs de résistance pour		bage du CV [mm				outre ≥ 210 mm voile ≥ 210 mm	
	CV30	CV35	CV50	Mome	ent résistant de cal	cul à l'ELU $m_{{\scriptscriptstyle R}d,{\scriptscriptstyle \mathcal{Y}}}$ [kN	N.m/m]
		240		-33,2	-48,3	-60,3	-79,6
Hauteur de l'ISOKORB®®	240			-34,3	-49,8	-62,2	-82,1
H [mm]		250		-35,5	-51,3	-64,1	-84,8
	250			-36,6	-52,8	-65,9	-87,4
		Effort tr	anchant	résistant de calcu	là l'ELU $v_{{\scriptscriptstyle R}{\scriptscriptstyle d},{\scriptscriptstyle Z}}$ [kN/n	n]	
Variante d'effort tranchar	nt	\	/1	57,7	86,5	86,5	86,5

<u>Vue de détail</u>

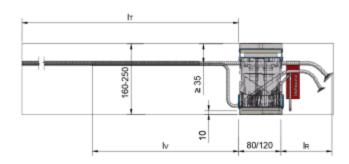
Coupe du type K-O

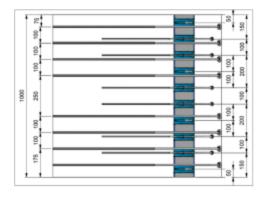
Entraxe des barres du type K-O (Exemple : T Type K-O-M2-V1)

Longueurs des barres

Schöck ISOKORB® T Type K-O		Longueurs minimales				
SCHOCK ISOKORB® 1 Type K	X-U	l_{T} (mm) (ø)	$l_{\scriptscriptstyle V}$ (mm) (ø)	l_R (mm) (ø)		
M1/M2/M3/M4	V1	734 (Ø12)	476 (Ø8)	145-190 (Ø10)		

Déformation (flèche complémentaire suivant §2.3.2.4.3)


<u>Deformation (fleche complementaire suivant §2.3.2.4.3)</u>							
Schöck ISOKORB® T Type			K-O				
		CV30	CV35	CV50			
Facteurs de déformation			Wmur ≥ 175 mm				
		tan a [%]					
	160	1,1	1,1	-			
	170	0,9	1,0	-			
	180	0,9	0,9	1,1			
	190	0,8	0,8	0,9			
Havetave de ICOKORD® H.Fereral	200	0,7	0,7	0,9			
Hauteur du ISOKORB® H [mm]	210	0,7	0,7	0,8			
	220	0,7	0,6	0,7			
	230	0,6	0,6	0,7			
	240	0,5	0,6	0,6			
	250	0,5	0,5	0,6			

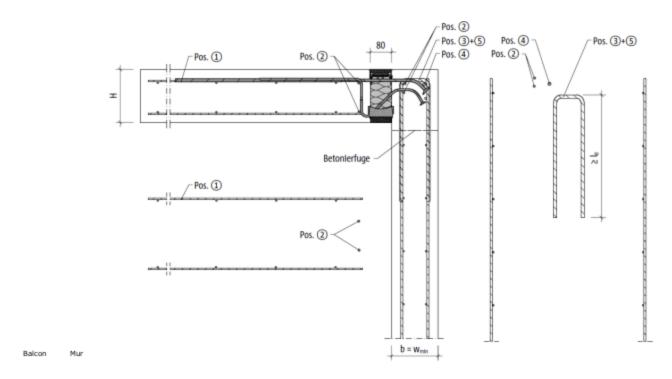

ISOKORB® XT Type K-O

Valeurs de résistances du XT Type K-O pour un béton C25/30 :

Schöck ISOKORB® XT Ty	ре К-О		M1	M2	МЗ	M4			
				Longueur de l'I	SOKORB® [mm]				
Assemblage / Composition			1000	1000	1000	1000			
Armatures de traction			4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12			
Barres d'ancrage			4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10			
Armatures pour l'effort trans	chant		4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8			
Modules de compression HTI	 E		6	8	10	16			
Hauteur du module HTE [mr	m]		30	30	30	30			
Armatures spécifiques			-	-	-	4			
Enrobage du béton CV [mm]				Largeur de la p Epaisseur du v	outre ≥ 175 mm voile ≥ 175 mm				
	CV35	CV50	Moment résistant de calcul à l'ELU $m_{Rd,y}$ [kN.m/m]						
	160		-16,4	-24,1	-30,4	-39,5			
		180	-17,5	-25,8	-32,2	-42,2			
	170		-18,6	-27,3	-34,1	-44,7			
		190	-19,7	-28,8	-36,0	-47,4			
	180		-20,8	-30,3	-37,8	-49,8			
Hauteur de l'ISOKORB® H [mm]		200	-22,0	-31,8	-39,7	-52,6			
	190		-23,0	-33,3	-41,6	-55,1			
		210	-24,3	-34,8	-43,5	-57,9			
	200		-25,3	-36,3	-45,3	-60,4			
		220	-26,6	-37,8	-47,2	-63,2			
	210		-27,6	-39,3	-49,1	-65,7			
		230	-28,9	-40,8	-51,0	-68,6			
	bé	age du ton mm]			outre ≥ 190 mm voile ≥ 190 mm				
	CV35	CV50	Mome	nt résistant de calc	cul à l'ELU $m_{{\scriptscriptstyle Rd},y}$ [kN	.m/m]			
	220		-30,0	-42,3	-52,8	-71,1			
Hauteur de l'ISOKORB®		240	-31,3	-43,8	-54,7	-74,1			
H [mm]	230		-32,4	-45,3	-56,6	-76,6			
		250	-33,8	-46,8	-58,4	-79,4			
	Enrobage du béton CV [mm] Largeur de la poutre ≥ 210								
	CV35	CV50	Moment résistant de calcul à l'ELU $m_{Rd,y}$ [kN.m/r						
Hauteur de l'ISOKORB®	240		-34,8	-48,3	-60,3	-81,9			
H [mm]	250		-37,3	-51,3	-64,1	-87,0			
Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle R}d,z}$ [kN/m]									
Variante d'effort tranchant	V	1	46,8	70,2	70,2	70,2			

Vue de détail :

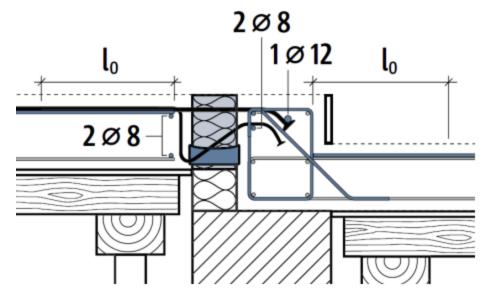
Coupe du type K-O


Entraxe des barres du type K-O (Exemple : XT Type K-O-M3-V1)


Longueurs des barres :

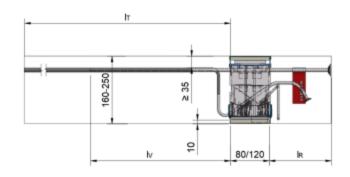
Cabilatookopp® VT Tarra I	Longueurs minimales					
Schöck ISOKORB® XT Type k	X-U	$l_{\scriptscriptstyle T}$ (mm) (ø)	l_{V} (mm) (ø)	l_R (mm) (ø)		
M1/M2/M3/M4	V1	725-745 (Ø12)	476 (Ø8)	145-190 (Ø10)		

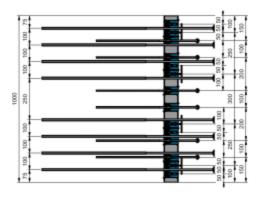
<u>Déformation (flèche complémentaire suivant §2.3.2.4.3)</u> Schöck ISOKORB® XT Type K-O CV35 CV50 Facteurs de déformation Wmur ≥ 175 mm tan a [%] 160 1,3 170 1,1 180 1,0 1,2 190 0,9 1,1 200 1,0 0,8 Hauteur du ISOKORB® H [mm] 0,9 210 0,8 220 0,7 0,8 230 0,7 0,7 0,7 240 0,6 250 0,7 0,6


Ferraillage complémentaire ISOKORB® T/XT type K-O:

Schöck Iso	korb® T/XT type K-O	M1	M2	M3	M4					
Armatures complémentaire chantier	ouvrage	Dalle (XC1) classe de résistance du béton ≥ C25/30 Balcon (XC4) classe de résistance du béton ≥ C25/30								
Renforts de recouvrem	ent en fonction du diamètre de la	barre								
Pos.1 avec Ø8/Ø10 ou Ø12 [cm²/m]	Côté balcon	A définir par le BET structure								
Armatures le long du rupteur										
Pos. 2	Côté balcon / poutre, mur	2 x 2 Ø 8								
Armatures verticale (applicable à une seule coupe)										
Pos.3 Dimensionnement des composants	Poutre, mur	A définir par le BE structure								
Armatures le long du r	upteur									
Pos. 4	Poutre, mur		≥ 1	Ø 12						
Armatures de traction	par fendage (applicable à une seu	le coupe)								
Pos. 5	Poutre, mur		1,30 [c	m²/m]						
Etriers										
Pos. 6	Côté dalle		A définir par le	BET structure						
Armatures de biais										
Pos. 7	Poutre, mur		A définir par le	BET structure						

Pour les résistances de calcul des aciers données, le ferraillage de la position 4 est nécessaire selon ETE 17/0261. Cet acier doit être positionné sur le buton de l'acier tel que dessiné sur la recommandation de mise en œuvre :


ISOKORB® T Type K-U


Valeurs de résistances du T Type K-U pour un béton ≥C25/30

Valeurs de résistances du T Type K-U pour un béton ≥C25/30 Schöck ISOKORB® T Type K-U				M1	M2	М3	M4	
Assemblage / Composition				Longueur de l'ISOKORB® [mm]				
				1000	1000	1000	1000	
Armatures de traction				4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12	
Barres d'ancrage				4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10	
Armatures pour l'effort tranchant				4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8	
Modules de compression HTE				7	9	14	16	
Hauteur du module HTE [mm]				30	30	30	30	
Armatures spécifiques				-	=	4	4	
	Enrobage du béton CV [mm]		200 mm > Largeur de la poutre ≥ 175 mm 200 mm > Epaisseur du voile ≥ 175 mm					
	CV30	CV35	CV50	Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN.m/				
		160		-15,5	-20,9	-27,6	-31,6	
	160		180	-16,5	-22,2	-29,4	-33,5	
		170		-17,5	-23,5	-31,1	-35,5	
Hauteur de l'ISOKORB® H [mm]	170		190	-18,5	-24,8	-32,8	-37,4	
Hadted de 1150KOKD H [Hill]		180		-19,6	-26,1	-34,5	-39,4	
	180		200	-20,6	-27,4	-36,2	-41,3	
		190		-21,6	-28,7	-37,9	-43,3	
	190		210	-22,6	-30,0	-39,6	-45,2	
Effort	tranchant	ésistant (de calcul	à l'ELU $v_{{\scriptscriptstyle R}d,z}$ [kN/m]				
Variante d'effort tranchant		V1		57,7	86,5	86,5	86,5	
		Enrobage du béton CV [mm]			220 mm > Largeur de la poutre ≥ 200 mm 220 mm > Epaisseur du voile ≥ 200 mm			
	CV30	CV35	CV50	Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN			y [kN.m/m]	
		160		-15,5	-22,9	-30,2	-34,5	
	160		180	-16,5	-24,3	-32,1	-36,7	
Hauteur de l'ISOKORB® H [mm]		170		-17,5	-25,7	-34,0	-38,8	
	170		190	-18,5	-27,1	-35,8	-40,9	
		180		-19,6	-28,5	-37,7	-43,1	
	180		200	-20,6	-30,0	-39,5	-45,2	
		190		-21,6	-31,4	-41,4	-47,3	
	190		210	-22,6	-32,8	-43,3	-49,5	
		200		-23,7	-34,2	-45,1	-51,6	
	200		220	-24,7	-35,6	-47,0	-53,7	
		210		-25,8	-37,0	-48,9	-55,9	
	210		230	-26,9	-38,4	-50,7	-58,0	
Effort tranchant résistant de calcul à								
Variante d'effort tranchant			/1	57,7	86,5	86,5	86,5	

Schöck ISOKORB®® T Type K-U				M1	M2	M3	M4	
,,	Enro	Enrobage du béton CV [mm]			240 mm > Largeur de la poutre ≥ 220 mm 240 mm > Epaisseur du voile ≥ 220 mm			
	CV30	CV35	CV50	Moment rés	istant de calcu	là l'ELU $m_{Rd,y}$	[kN.m/m]	
		160		-15,5	-22,9	-30,4	-36,8	
	160		180	-16,5	-24,4	-32,3	-39,1	
		170		-17,5	-25,9	-34,3	-41,3	
	170		190	-18,5	-27,4	-36,2	-43,6	
		180		-19,6	-28,9	-38,2	-45,9	
	180		200	-20,6	-30,4	-40,1	-48,2	
		190		-21,6	-31,9	-42,2	-50,4	
Hauteur de l'ISOKORB®®	190		210	-22,6	-33,4	-44,1	-52,7	
H [mm]		200		-23,7	-35,0	-46,2	-55,0	
	200		220	-24,7	-36,5	-48,1	-57,2	
		210		-25,8	-38,1	-50,2	-59,5	
	210		230	-26,9	-39,6	-52,2	-61,8	
		220		-28,0	-41,2	-54,3	-64,1	
	220		240	-29,0	-42,7	-56,3	-66,3	
		230		-30,1	-44,3	-58,4	-68,1	
	230		250	-31,2	-45,8	-59,6	-68,1	
Effo	rt tranchant ı	résistant (de calcul	à l'ELU $v_{{\scriptscriptstyle Rd},z}$ [k	N/m]			
Variante d'effort tranchant V1			/1	57,7	86,5	86,5	86,5	
	Enrobag CV [mm	Enrobage du béton			Largeur de la poutre ≥ 240 mm Epaisseur du voile ≥ 240 mm			
	CV30				Moment résistant de calcul à l'ELU $m_{Rd,y}$ [kN.m/m]			
		160	0.30	-15,5	-22,9	-30,4	-37,8	
Hauteur de l'ISOKORB ^{®®} H [mm]	160	100	180	-16,5	-24,4	-32,3	-40,1	
		170		-17,5	-25,9	-34,3	-42,6	
	170	170	190	-18,5	-27,4	-36,2	-45,0	
	17.0	180	130	-19,6	-28,9	-38,2	-47,5	
	180	100	200	-20,6	-30,4	-40,1	-49,9	
	100	190	200	-21,6	-31,9	-42,2	-52,4	
	190		210	-22,6	-33,4	-44,1	-54,8	
	150	200		-23,7	-35,0	-46,2	-57,3	
	200	230	220	-24,7	-36,5	-48,1	-59,8	
	200	210		-25,8	-38,1	-50,2	-62,3	
	210		230	-26,9	-39,6	-52,2	-64,7	
		220		-28,0	-41,2	-54,3	-67,3	
	220	220	240	-29,0	-42,7	-56,3	-69,8	
	220	230	2-10	-30,1	-44,3	-58,4	-72,2	
	230	230	250	-31,2	-45,8	-60,4	-72,2	
	230	240	230	-32,3	-47,5	-62,5	-72,2	
	240	270		-33,4	-49,0	-63,2	-72,2	
	240	250		-34,5	-49,0	-63,2	-72,2	
	250	230		-34,5	-50,7	-63,2	-72,2	
===		rócistant .	do calcul:	$\stackrel{-33,0}{ ext{a}}$ l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [k		03,2	12,2	
Etto								

Vue en détail

Coupe du type K-U

Entraxe des barres du type K-U (Exemple : T Type K-U-M3-V1)

Longueurs des barres :

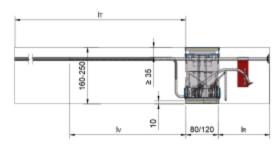
Cabilat COKODD® T Tarra	V 11	Longueurs minimales				
Schöck ISOKORB® T Type K-U		$l_{\scriptscriptstyle T}$ (mm) (ø)	l_{V} (mm) (ø)	l_{R} (mm) (ø)		
M1/M2/M3/M4	V1	725-737 (Ø12)	476 (Ø8)	115-220 (Ø10)		

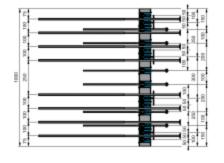
Déformation (flèche complémentaire suivant §2.3.2.4.3)

<u>Deformation (Heche Complementaire Survan</u>	it 92.3.2.4.3	<u> </u>			
Schöck ISOKORB® T Type	K-U				
		CV30	CV35	CV50	
Facteurs de déformation	Wmur ≥ 175 mm				
	tan ɑ [%]				
	160	1,0	1,1	-	
	170	0,9	1,0	-	
	180	0,8	0,9	1,0	
	190	0,8	0,8	0,9	
Havetave da HICOVORD® HICeanal	200	0,7	0,7	0,8	
Hauteur de l'ISOKORB® H [mm]	210	0,6	0,7	0,8	
	220	0,6	0,6	0,7	
	230	0,6	0,6	0,6	
	240	0,5	0,5	0,6	
	250	0,5	0,5	0,6	

ISOKORB® XT Type K-U

Valeurs de résistances du XT Type K-U pour un béton ≥C25/30 :

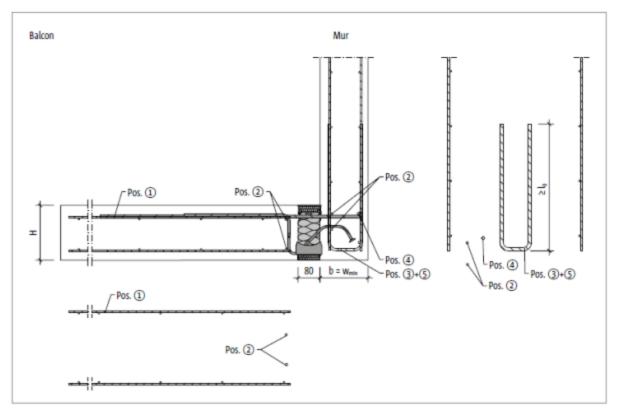

Schöck ISOKORB® XT Type K-U			M1	M2	МЗ	M4	
			Longueur de l	'ISOKORB® [m	m]		
Assemblage / Composition			1000	1000	1000	1000	
Armatures de traction			4 Ø 12	6 Ø 12	8 Ø 12	10 Ø 12	
Barres d'ancrage			4 Ø 10	6 Ø 10	8 Ø 10	10 Ø 10	
Armatures pour l'effort tranchant			4 Ø 8	6 Ø 8	6 Ø 8	6 Ø 8	
Modules de compression HTE			7	9	14	16	
Hauteur du module HTE [mm]			30	30	30	30	
Armatures spécifiques			-	-	4	4	
	Enrobage CV [mm]	du béton		n > Largeur do m > Epaisseu			
	CV35	CV50	Moment r	ésistant de calc	cul à l'ELU $m_{Rd,y}$	[kN.m/m]	
	160		-15,9	-20,9	-27,6	-31,6	
		180	-17,1	-22,2	-29,4	-33,5	
	170		-18,1	-23,5	-31,1	-35,5	
Llautaur da IIICOKODD® II [mm]		190	-19,2	-24,8	-32,8	-37,4	
Hauteur de l'ISOKORB® H [mm]	180		-20,2	-26,1	-34,5	-39,4	
		200	-21,3	-27,4	-36,2	-41,3	
	190		-22,3	-28,7	-37,9	-43,3	
		210	-23,3	-30,0	-39,6	-45,2	
Effort tr	anchant ré	sistant de	calcul à l'ELU v_i	$_{Rd,z}$ [kN/m]			
Variante d'effort tranchant	V	1	46,8	70,2	70,2	70,2	
	Enrobage CV [du béton mm]	220 mm > Largeur de la poutre ≥ 200 mm 220 mm > Epaisseur du voile ≥ 200 mm				
	CV35	CV50	Moment r	ésistant de calc	cul à l'ELU $m_{Rd,y}$	[kN.m/m]	
	160		-15,9	-22,9	-30,2	-34,5	
		180	-17,1	-24,3	-32,1	-36,7	
	170		-18,1	-25,7	-34,0	-38,8	
		190	-19,2	-27,1	-35,8	-40,9	
	180		-20,2	-28,5	-37,7	-43,1	
Hauteur de l'ISOKORB® H [mm]		200	-21,4	-30,0	-39,5	-45,2	
Hadieul de HOOKOKD* H[IIIII]	190		-22,4	-31,4	-41,4	-47,3	
		210	-23,6	-32,8	-43,3	-49,5	
	200		-24,7	-34,2	-45,1	-51,6	
		220	-25,9	-35,6	-47,0	-53,7	
	210		-26,9	-37,0	-48,9	-55,9	
		230					
Effort tr	anchant ré	sistant de	calcul à l'ELU $v_{\scriptscriptstyle I}$		1		
Variante d'effort tranchant		V1	46,8	70,2	70,2	70,2	

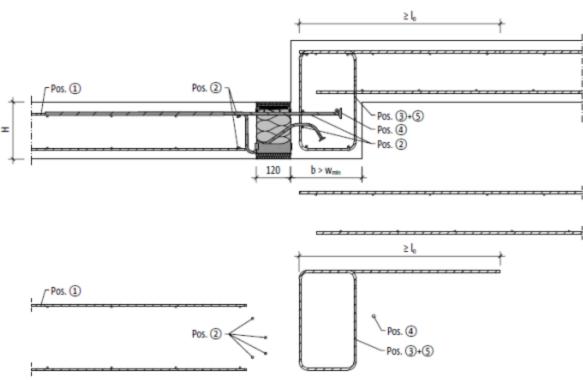

Schöck ISOKORB® XT Type K-U			M1	M2	M3	M4
SCHOCK ISOKOKB XI TYPE K-0	bé	age du ton [mm]			e la poutre ≥ 22 r du voile ≥ 22	
	CV35	CV50	Moment r	ésistant de calc	ul à l'ELU $m_{{\scriptscriptstyle Rd},y}$ [kN.m/m]
	160		-15,9	-23,5	-31,0	-36,8
		180	-17,1	-25,1	-33,1	-39,1
	170		-18,1	-26,6	-35,0	-41,3
		190	-19,2	-28,3	-37,2	-43,6
	180		-20,2	-29,7	-39,1	-45,9
		200	-21,4	-31,4	-41,3	-48,2
	190		-22,4	-32,9	-43,3	-50,4
Havetaver da UTCOKODD® H [1		210	-23,6	-34,6	-45,5	-52,7
Hauteur de l'ISOKORB® H [mm]	200		-24,7	-36,1	-47,5	-55,0
		220	-25,9	-37,9	-49,8	-57,2
	210		-26,9	-39,4	-51,7	-59,5
		230	-28,2	-40,9	-54,0	-61,8
	220		-29,2	-42,5	-56,0	-64,1
		240	-30,5	-44,0	-58,0	-66,3
	230		-31,5	-45,5	-59,6	-68,1
		250	-32,9	-47,0	-59,6	-68,1
Effort	tranchant re	ésistant de	calcul à l'ELU v	_{Rd,z} [kN/m]		
Variante d'effort tranchant	\	/1	46,8	70,2	70,2	70,2
	bé	age du ton [mm]			outre ≥ 240 mi oile ≥ 240 mm	
	CV35	CV50	Moment r	ésistant de calc	ul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle V}}$ [kN.m/m]
	160		-15,9	-23,5	-31,0	-38,5
		180	-17,1	-25,1	-33,1	-41,1
	170		-18,1	-26,6	-35,0	-43,5
		190	-19,2	-28,3	-37,2	-46,1
	180		-20,2	-29,7	-39,1	-48,5
		200	-21,4	-31,4	-41,3	-51,0
	190		-22,4	-32,9	-43,3	-53,4
		210	-23,6	-34,6	-45,5	-55,8
	200		-24,7	-36,1	-47,5	-58,3
Hauteur de l'ISOKORB® H [mm]		220	-25,9	-37,9	-49,8	-60,7
	210		-26,9	-39,4	-51,7	-63,1
		230	-28,2	-41,2	-54,0	-65,5
	220		-29,2	-42,7	-56,0	-67,9
		240	-30,5	-44,5	-58,4	-70,3
	230		-31,5	-46,0	-60,3	-72,2
		250	-32,9	-47,9	-62,7	-72,2
	240		-33,9	-49,4	-63,2	-72,2
	250		-36,3	-52,8	-63,2	-72,2
Effort		í Scictant de	calcul à l'ELU v		•	•
LIIOIC	ti di iciidilit i	SSISTAIL GE	calcul a l LLU V	Rd.z [KIN/IIII]		

Longueurs des barres :

C-F#-F-TCOKODD	VT T V II	Longueurs minimales						
Schöck ISOKORB [©]	У ХІТУРЕК-О	l_{T} (mm) (ø)	l_{V} (mm) (ø)	l_R (mm) (ø)				
M1/M2/M3/M4	V1	725-745 (Ø12)	476 (Ø8)	145-190 (Ø10)				

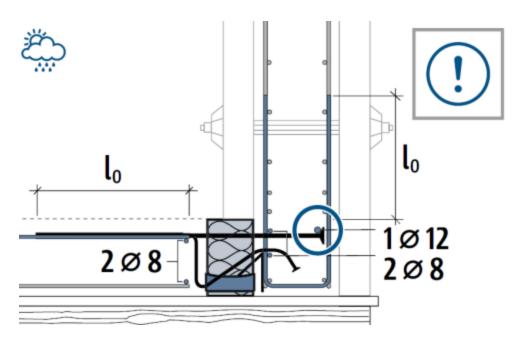
Vue en détail


Coupe du type K-U


Entraxe des barres du type K-U (Exemple : XT Type K-U-M3-V1)

Déformation (flèche complémentaire suivant §2.3.2.4.3):

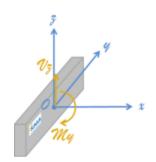
Deformation (freche complementaire survant §2.5.2.4.5):											
Schöck ISOKORB® XT Type		K	-U								
		CV35	CV50								
Facteurs de déformation		Wmur ≥ 175 mm									
		tan d	1 [%]								
	160	1,2	-								
	170	1,1	-								
	180	1,0	1,1								
	190	0,9	1,0								
Houtour de l'ICOVODD® II [mm]	200	0,8	0,9								
Hauteur de l'ISOKORB® H [mm]	210	0,7	0,8								
	220	0,7	0,8								
	230	0,6	0,7								
	240	0,6	0,7								
	250	0,6	0,6								


Ferraillage complémentaire ISOKORB® T/XT type K-U:

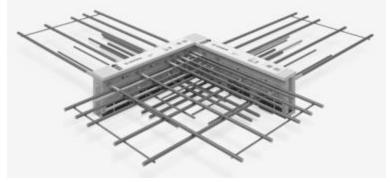
Schöck Isol	korb® T/XT type K-U	M1	M2	М3	M4							
Armatures complémentaires sur chantier	Ouvrage	Dalle (XC1) classe de résistance du béton ≥ C25/30 Balcon (XC4) classe de résistance du béton ≥ C25/30										
Renforts de recouvrement en fonction du diamètre de la barre												
Pos.1 avec Ø8/Ø10 ou Ø12 [cm²/m]	Côté balcon		A définir par le	BET structure								
Barres le long du rupte	ur											
Pos. 2	Côté balcon / poutre, mur	2 x 2 Ø 8										
Armatures verticale (pe	eut être prise en compte en tant q	ue section néces	saire)									
Pos.3 Dimensionnement des composants	Poutre, mur		A définir par le	e BET structure								
Barres le long du rupte	ur											
Pos. 4 Poutre, mur ≥ 1 Ø 12												
Armatures de traction par fendage (peut être prise en compte en tant que section nécessaire)												
Pos. 5 [cm²/m] Poutre, mur 1,30												

Pour la résistance de calcul des aciers donnée, le ferraillage de la position 4 est nécessaire selon ETE 17/0261. Cet acier doit être positionné sur le buton de l'acier tel que dessiné sur la recommandation de mise en œuvre :

ISOKORB® T/XT Type C


Liaisons balcon en angle sortant

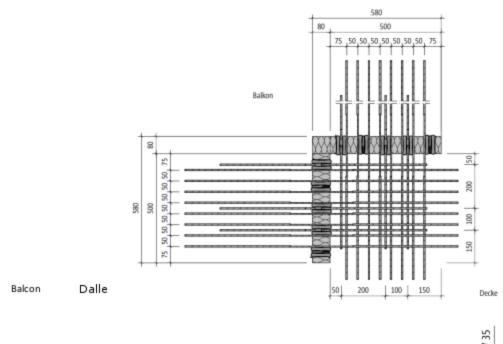
Le rupteur thermique ISOKORB® Type C était nommé anciennement Type K-Eck/angle.

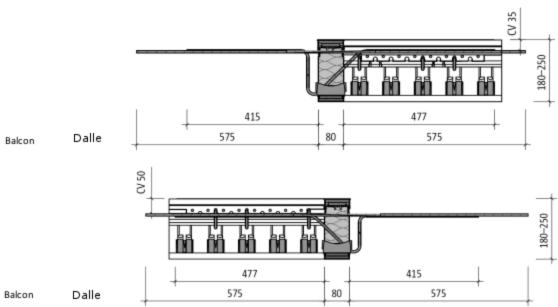

Le type C est destiné à assurer la continuité linéique de l'isolation dans le plan vertical au droit d'un balcon en porte-à-faux en angle sortant (balcon ou casquette). Il permet de transmettre des efforts tranchants et des moments négatifs depuis l'élément en porte-à-faux vers l'appui. Les armatures de compression sont reprises par des barres en acier. Il peut être équipé de plaques coupe-feu.

Les types C existent dans la gamme T en épaisseur d'isolation de $80~\rm mm$ et dans la gamme XT en épaisseur d'isolation de $120~\rm mm$.

Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.

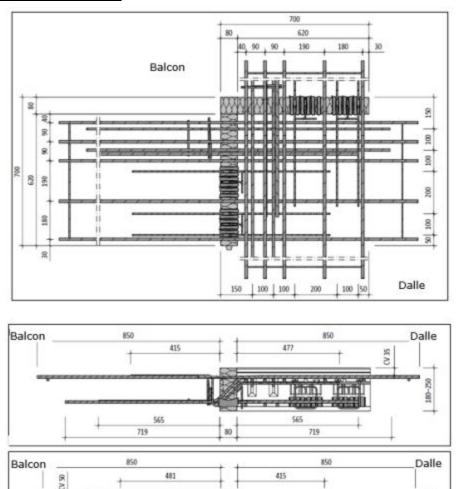
Variante K-C (corner) pour le traitement des angles. Les renforts sont intégrés à cette variante.


Vue complète du type C (Exemple : T Type C M1)


ISOKORB® T Type C

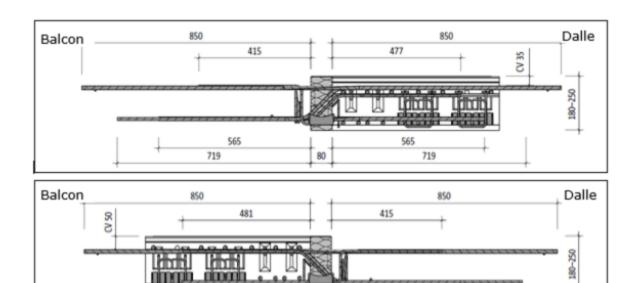
Valeurs de résistances du T Type C pour un béton C25/30

Schöck ISO	KORB® T Ty	уре C	М	1	M	12	М3			
				Varia	ante de conne	exion géomét	rique			
Assembla	ge / Composit	on	L	R	L	R	L	R		
Longueur statique o	de l'ISOKORB®	[mm]	500	500	620	620	620	620		
Longueur géométrio	que de l'ISOK(ORB®[mm]	500	580	700	700	700	700		
Armatures supérieu	ıres		8 Ø 8	8 Ø 8	5 Ø 14	5 Ø 14	6 Ø 14	6 Ø 14		
Armatures inférieur	es		=	-	3 Ø 14	3 Ø 14	4 Ø 14	4 Ø 14		
Modules de compre	ssion HTE		5	5	6	6	6	6		
Armatures diagonal	es / H = 180 -	190 mm	3 Ø 8	3 Ø 8	3 Ø 8 + 2 Ø 10	3 Ø 8 + 2 Ø 10	4 Ø 8 + 2 Ø 10	4 Ø 8 + 2 Ø 10		
Armatures diagonal	es / H ≥ 200 r	nm	3 Ø 8	3 Ø 8	3 Ø 8 + 2 Ø 12	3 Ø 8 + 2 Ø 12	4 Ø 8 + 2 Ø 12	4 Ø 8 + 2 Ø 12		
Armatures spécifiqu	ies		-	-	2 Ø 6	2 Ø 6	2 Ø 6	2 Ø 6		
		du béton mm]	M	$\mathit{M}_{\mathit{Rd},y}$ [kN.m] par élément partiel L 1ère lit et R 2ème lit						
	CV30	CV35					1			
		180		3,3		6,8		0,7		
	180		-14	4,1		8,4	-32	2,5		
		190		1,9	-2	9,9		4,2		
	190			5,8		1,4		5,8		
		200	-10	5,5	-32,9			7,5		
	200		-17	7,4	-34,3		-39	9,2		
		210		3,1		5,8	-41,0			
Hauteur de l'ISOKORB® H	210		-18	3,9	-3	7,3	-42	2,7		
[mm]		220	-19	9,8	-3	8,8	-44	4,3		
	220		-20	0,5	-4	0,3	-40	5,0		
		230	-2:	1,4	-4	1,8	-47	7,8		
	230		-27	2,1	-43	3,3	-49	9,5		
		240	-23	3,0	-4	4,8	-5:	1,1		
	240		-23	3,8	-4	6,3	-52	2,8		
		250	-24	4,5	-4	7,8	-54	4,6		
	250			5,4		9,3	-56	5,3		
		$V_{Rd,z}$ [kN] p	ar élément p	artiel L 1ère	lit et R 2ème	lit				
Hauteur de l'ISOKO	DR® H [mm]	180-190	34	ł , 8	73	3,4	85,0			
nauteur de 1150KO	[וווווו] וו ״טאי	≥ 200	34	ł , 8	99	9,6	111,3			


T Type C-M1 VUE EN PLAN ET DETAIL

180-250

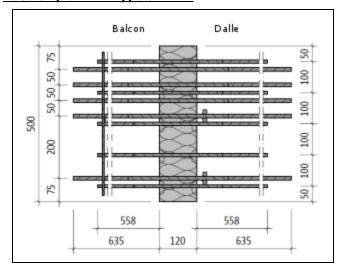
T Type C-M2 VUE EN PLAN ET DETAIL

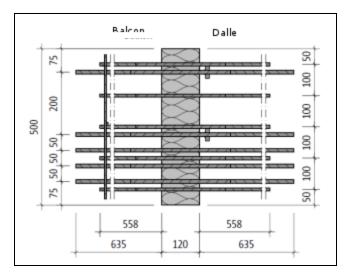

T Type C-M3 VUE EN PLAN ET DETAIL

719

485

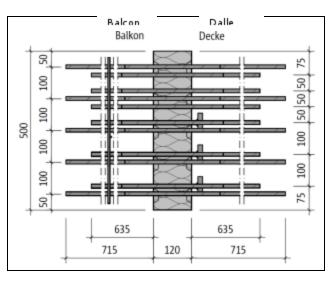
719

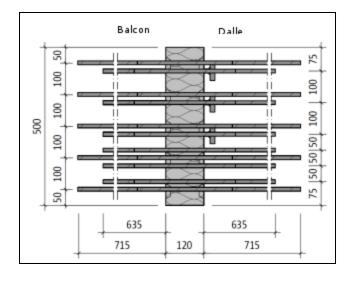



ISOKORB® XT Type C

Valeurs de résistances du XT Type C pour un béton ≥C25/30

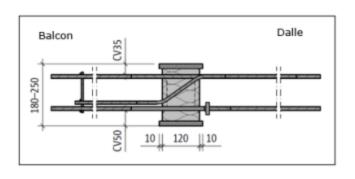
Schöck ISOKORB®	XT Type C	M1	M2			
A / C -		Longueur de l'IS	OKORB® (mm)			
Assemblage / Co	omposition	500	500			
Armatures de traction		5 Ø 12	6 Ø 12			
Armatures de compression		3 Ø 12	3 Ø 12			
Butons de compression SCE		2 Ø 12	3 Ø 14			
A was a trump of a count leaff out two makes at	V1	5 Ø 10	5 Ø 10			
Armatures pour l'effort tranchant	V2	5 Ø 12	5 Ø 12			
II [mama]	V1	180	180			
H_{min} [mm]	V2	200	200			
		$\mathit{M}_{\mathit{Rd},y}$ [kN.m] par élément partiel				
	180	-17,0	-21,8			
	190	-19,0	-24,5			
	200	-21,1	-27,1			
Hauteur de l'ISOKORB® H [mm]	210	-23,1	-29,7			
nauteur de l'ISOKORB° n [IIIIII]	220	-25,1	-32,4			
	230	-27,2	-35,0			
	240	-29,2	-37,6			
	250	-31,3	-40,2			
	V_{Rdz} [kN] par élément parti	el L 1ère lit et R 2ème lit				
Hauteur de l'ISOKORB® H [mm]	V1	91,4	91,4			
Hauteur de HISOKOKD° H [IIIIII]	V2	131,6	131,6			

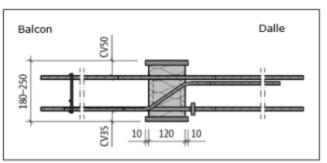

Vues en plan : XT Type C M1 V1



XT Type CLM1 V1

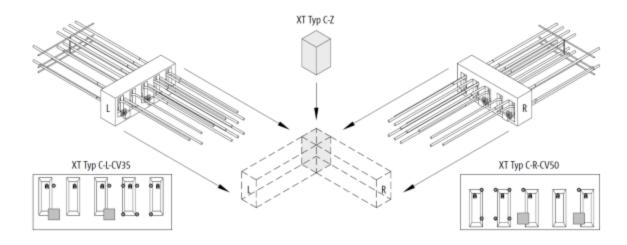
XT Type CR M1 V1

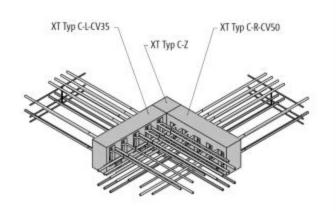




XT Type CLM2 V2

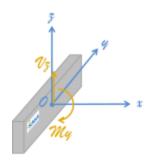
XT Type CR M2 V2

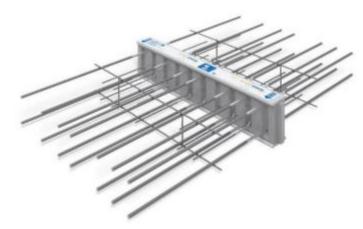

Coupe de principe : XT Type C CV35 Coupe de principe : XT Type C CV50



Le type C se place en angle comme présenté sur le schéma suivant :

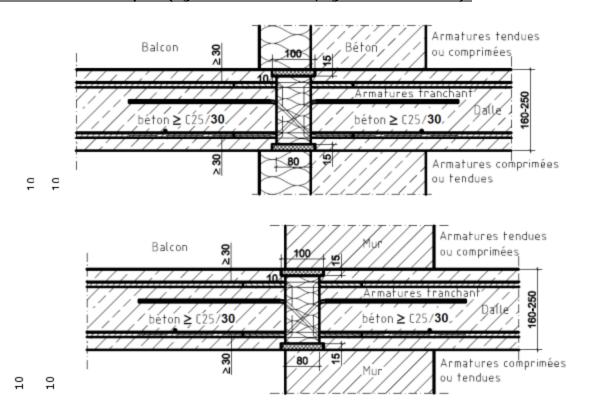
С


ISOKORB® T/XT Type D


Liaisons dalle-dalle

Le type D est destiné à assurer la continuité linéique de l'isolation dans le plan vertical à la jonction de la dalle de plancher et d'un autre élément en porte-à-faux : balcon, casquette ou autre dalle. Il est équipé de plaques silico-calcaires sans profilés PVC.

Les types D existent dans la gamme T en épaisseur d'isolation de 80 mm et dans la gamme XT en épaisseur isolation de 120 mm, en longueur de 1000 mm et 500 mm.


Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8

Vue complète du type D (Exemple : T Type D-MM3-VV1)

<u>Utilisation en dalle coulée sur place (figure du haut : cas ITE, figure du bas : cas ITR) :</u>

ISOKORB® T Type D (L = 1000 mm)

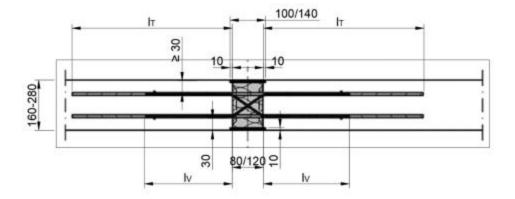
Valeurs de résistances du T Type D pour un béton ≥C25/30 :

0 1 " 1 700			_		MM1		MM2						
Schöck ISO	KOKB®	і іур	ט	VV1	VV2	VV3	VV1	VV2	VV3				
	- -				Lo	ngueur de l'IS	OKORB® [mm]						
AS	ssembl	age		1000	1000	1000	1000	1000	1000				
Armatures tr	action /	compre	ssion		2 x 4 Ø 12			2 x 5 Ø 12	x 5 Ø 12				
Armatures po	our l'effo	ort tranc	chant	2 × 4 Ø 6	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10				
	C١	/30		160	160	170	160	170	180				
H_{min} [mm]	C١	/35		160	160	170	160	170	180				
	C١	/50		200	200 200 210 200 210 220								
		age du CV [mm		Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd,v}}$ [kN.m/m]									
	CV30	CV35			T TOTT CHE T CE	notarit de eare	ar ar EEO maay L	,					
	160			±14,9	±14,2	-	±18,2	-	-				
	160		200	±15,8	±15,0	-	±19,3	-	-				
		170		±16,7	±15,9	±14,0	±20,4	±18,6	-				
	170		210	±17,6	±16,7	±14,7	±21,5	±19,6	=				
		180		±18,5	±17,6	±15,5	±22,6	±20,5	±18,3				
	180		220	±19,4	±18,4	±16,2	±23,7	±21,5	±19,2				
		190		±20,3	±19,3	±17,0	±24,8	±22,5	±20,1				
	190		230	±21,2	±20,1	±17,7	±25,9	±23,5	±21,0				
		200		±22,1	±21,0	±18,5	±27,0	±24,5	±21,9				
Hauteur de l'ISOKORB®	200		240	±23,0	±21,8	±19,2	±28,1	±25,5	±22,8				
H [mm]		210		±23,8	±22,7	±20,0	±29,2	±26,5	±23,7				
	210		250	±24,7	±23,5	±20,7	±30,3	±27,5	±24,5				
		220		±25,6	±24,4	±21,5	±31,4	±28,5	±25,4				
	220			±26,5	±25,3	±22,2	±32,5	±29,5	±26,3				
		230		±27,4	±26,1	±23,0	±33,6	±30,5	±27,2				
	230			±28,3	±27,0	±23,8	±34,7	±31,5	±28,1				
		240		±29,2	±27,8	±24,5	±35,8	±32,5	±29,0				
	240			±30,1	±28,7	±25,3	±36,9	±33,5	±29,9				
		250		±31,0	±29,5	±26,0	±38,0	±34,5	±30,8				
	250			±31,9 ±30,4 ±26,8 ±39,1 ±35,5 ±31,7									
				ort tranchant re	ésistant de calo	cul à l'ELU $v_{{\scriptscriptstyle Rd},z}$	[kN/m]	1					
Variante	d'effort VV1-VV		ant	±30,5	±45,7	±81,1	±45,7	±81,1	±117,9				

0 1 " 1 700		a				ммз					MM4			
Schöck ISO	KORB	в ТТу	pe D	VV1	VV2	VV3	VV4	VV5	VV1	VV2	VV3	VV4	VV5	
_							Long	ueur de l'I	SOKORB	® [mm]				
AS	sembl	age		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
Armatures tr	action	/ comp	ression			2 x 7 Ø :	12				2 x 10 Ø	12		
Armatures p	our l'ef	fort tra	nchant	2×6 Ø 6	2×6 Ø 8	2 × 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12	
	C١	/30		160	170	180	180	190	160	170	180	180	190	
H_{min} [mm]	C١	/35		160	170	180	180	200	160	170	180	180	200	
	C١	/50		200	200 210 220 220 230 200 210 220 220 230									
	C	age du	າ]		Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN.m/m]									
	CV30	CV35	CV50	±26,4	_	_	_	_	±38,6	_	_	_	_	
	160	100	200	±28,0	-	_	_	_	±41,0	_	_	_	_	
		170		±29,6	±27,7	_	_	-	±43,3	±41,4	_	_	_	
	170		210	±31,2	±29,2	-	-	-	±45,6	±43,6	-	-	-	
		180		±32,8	±30,7	±28,4	±26,1	-	±48,0	±45,9	±43,6	±41,3	-	
-	180		220	±34,4	±32,2	±29,8	±27,4	-	±50,3	±48,1	±45,8	±43,3	-	
		190		±35,9	±33,7	±31,2	±28,6	-	±52,6	±50,3	±47,9	±45,3	-	
	190		230	±37,5	±35,1	±32,6	±29,9	±24,2	±54,9	±52,6	±50,0	±47,3	±41,6	
		200		±39,1	±36,6	±34,0	±31,2	±25,2	±57,3	±54,8	±52,1	±49,3	±43,4	
Hauteur de l'ISOKORB®	200		240	±40,7	±38,1	±35,4	±32,5	±26,3	±59,6	±57,0	±54,2	±51,3	±45,1	
H [mm]		210		±42,3	±39,6	±36,7	±33,7	±27,3	±61,9	±59,2	±56,4	±53,3	±46,9	
	210		250	±43,9	±41,1	±38,1	±35,0	±28,3	±64,3	±61,5	±58,5	±55,3	±48,7	
		220		±45,5	±42,6	±39,5	±36,3	±29,3	±66,6	±63,7	±60,6	±57,3	±50,4	
	220			±47,1	±44,1	±40,9	±37,5	±30,4	±68,9	±65,9	±62,7	±59,4	±52,2	
		230		±48,7	±45,6	±42,3	±38,8	±31,4	±71,2	±68,1	±64,8	±61,4	±54,0	
	230			±50,3	±47,1	±43,6	±40,1	±32,4	±73,6	±70,4	±66,9	±63,4	±55,7	
		240		±51,9	±48,5	±45,0	±41,3	±33,4	±75,9	±72,6	±69,1	±65,4	±57,5	
	240			±53,4	±50,0	±46,4	±42,6	±34,5	±78,2	±74,8	±71,2	±67,4	±59,2	
		250		±55,0	±51,5	±47,8	±43,9	±35,5	±80,6	±77,0	±73,3	±69,4	±61,0	
	250			±56,6	±53,0	±49,2	±45,1	±36,5	±82,9	±79,3	±75,4	±71,4	±62,8	
				Effo	rt tranch	ant résista	nt de calcu	là l'ELU v_I	$_{Rd,z}$ [kN/n	1]	1			
Variante d'ef	fort tra	nchant	VV1- VV5	±45,7	±81,1	±117,9	±157,2	±267,4	±45,7	±81,1	±117,9	±157,2	±267,4	

							MM5				
Schöck IS	OKORB® '	ТТуре	D		VV1	VV2	VV3	VV4	VV5		
_						Longue	ır de l'ISOK(ORB® [mm]			
Ass	semblag	е			1000	1000	1000	1000	1000		
Armatures traction / compres	ssion				2 x 12 Ø 12						
Armatures pour l'effort tranc	hant				2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12		
	CV30				160	170	180	180	190		
H_{min} [mm]	CV35				160	170	180	180	200		
	CV50				200	210	220	220	230		
		Enrob CV [m	ım]	du béton CV50	Mome	nt résistani	de calcul à	l'ELU $m_{{\scriptscriptstyle Rd},y}$ [kNm/m]		
			160		±46,8	-	-	-	-		
	160						-	=	-		
			170		±52,5	±50,6	-	-	-		
		170		210	±55,3	±53,3	1	ı	-		
			180		±58,1	±56,0	±53,8	±51,4	-		
		180		220	±60,9	±58,7	±56,4	±53,9	-		
			190		±63,7	±61,4	±59,0	±56,4	-		
		190		230	±66,6	±64,2	±61,6	±58,9	±53,2		
			200		±69,4	±66,9	±64,2	±61,4	±55,5		
Hauteur du ISOKORB® H [m	ım1	200		240	±72,2	±69,6	±66,8	±63,9	±57,7		
Tiduteur du 130KOKD* TI [II			210		±75,0	±72,3	±69,4	±66,4	±60,0		
		210		250	±77,8	±75,0	±72,0	±68,9	±62,2		
			220		±80,7	±77,8	±74,7	±71,4	±64,5		
		220			±83,5	±80,5	±77,3	±73,9	±66,7		
			230		±86,3	±83,2	±79,9	±76,4	±69,0		
		230			±89,1	±85,9	±82,5	±78,9	±71,3		
			240		±91,9	±88,6	±85,1	±81,4	±73,5		
		240			±94,8	±91,3	±87,7	±83,9	±75,8		
			250		±97,6	±94,1	±90,3	±86,4	±78,0		
		250			±100,4	±96,8	±92,9	±88,9	±80,3		
	Effort tranchant résistant de d										
Variante d'effort tranchant				VV1-VV5	±45,7	±81,1	±117,9	±157,2	±267,4		

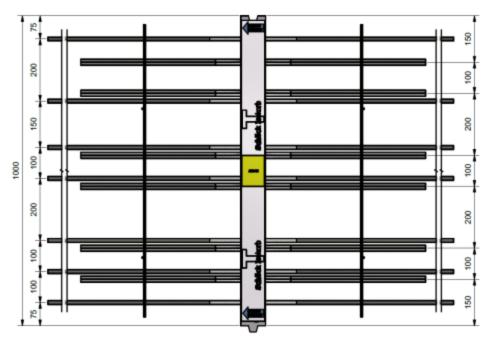
ISOKORB® T Type D (L = 500 mm)


Valeurs de résistances du T Type D pour un béton ≥C25/30 :

			_		MM1			ММ	2					ммз		
Schöck ISC	OKORE	B® TT	ype D	VV1	VV2	VV3	VV1	٧V	/2	VV3	VV1	VV2	V	V3	VV4	VV5
A - -			•••					Long	jueur d	e l'ISO	KORB®	[mm]				·
Assembla	ge / C	ompos	ition	500*	500*	500*	500*	50	0*	500*	500*	500*	50	0*	500*	500*
Armatures compression		action	/	2	x 2 Ø 1	2		2 x 3 Ø 12					2 x	4 Ø 12		
				2 ×	2 ×	2 ×	2 ×	2	2 × 2 ×		2 ×	2 ×	2 ×		2 ×	2 ×
Armaturesp	our l'e	ffort tra	nchant	2 Ø 6	3 Ø 6	3 Ø 8	3 Ø 6	3 Ø	3 Ø 8 3 Ø 10		3 Ø 6	3 Ø 8	3 Ø	0 10	4 Ø 1	0 4 Ø12
		CV3	0	160	160	170	160	17	70 180 160 170		18	80	180	190		
H_{min} [mm]		CV3	5	160	160	170	160	17	' 0	180	160	170	18	80	180	190
		CV5	0	200	200	210	200	21	.0	220	200	210	2	20	220	230
	Enrob	age du	béton													
	(CV [mm	n]			Mome	nt résist	ant de c	alcul à	l'ELU fo	ondame	ntal $m_{\scriptscriptstyle Rd}$	_{l,y} [kN.	m/0,5m]	
	CV30	CV35	CV50			1	1							1		
		160		±7,4	±7,1	-	±11,2	-	-		±15,2	-		-	-	-
		200	±7,9	±7,5	-	±11,8	-	-		±16,2	-		-	-	-	
		170		±8,3	±7,9	±7,0	±12,5	±11,6	-		±17,1	±16,1		-	-	-
	170		210	±8,8	±8,4	±7,4	±13,2	±12,2	-		±18,0	±17,0		-	-	-
		180		±9,2	±8,8	±7,7	±13,8	±12,8	±11,7		±18,9	±17,9		±16,8	±15,6	-
	180		220	±9,7	±9,2	±8,1	±14,5	±13,4	±12,3		±19,8	±18,7		±17,6	±16,3	-
		190		±10,1	±9,6	±8,5	±15,2	±14,0	±12,8		±20,7	±19,6		±18,4	±17,1	±14,4
	190		230	±10,6	±10,1	±8,9	±15,9	±14,7	±13,4		±21,7	±20,5		±19,2	±17,9	±15,0
		200		±11,0	±10,5	±9,2	±16,5	±15,3	±14,0		±22,6	±21,3		±20,0	±18,6	±15,6
Hauteur de l'ISOKORB®	200		240	±11,5	±10,9	±9,6	±17,2	±15,9	±14,5		±23,5	±22,2		±20,8	±19,4	±16,3
H [mm]		210		±11,9	±11,3	±10,0	±17,9	±16,5	±15,1		±24,4	±23,1		±21,6	±20,1	±16,9
	210		250	±12,4	±11,8	±10,4	±18,6	±17,2	±15,7		±25,3	±23,9		±22,4	±20,9	±17,5
		220		±12,8	±12,2	±10,7	±19,2	±17,8	±16,2		±26,3	±24,8		±23,3	±21,6	±18,2
	220			±13,3	±12,6	±11,1	±19,9	±18,4	±16,8		±27,2	±25,7		±24,1	±22,4	±18,8
		230		±13,7	±13,0	±11,5	±20,6	±19,0	±17,4		±28,1	±26,5		±24,9	±23,2	±19,4
	230			±14,2	±13,5	±11,9	±21,2	±19,6	±17,9		±29,0	±27,4		±25,7	±23,9	±20,1
		240		±14,6	±13,9	±12,2	±21,9	±20,3	±18,5		±29,9	±28,3		±26,5	±24,7	±20,7
	240			±15,1	±14,3	±12,6	±22,6	±20,9	±19,0		±30,8	±29,1		±27,3	±25,4	±21,4
		250		±15,5	±14,8	±13,0	±23,3	±21,5	±19,6		±31,8	±30,0		±28,1	±26,2	±22,0
	250			±16,0	±15,2	±13,4	±23,9	±22,1	±20,2		±32,7	±30,9		±28,9	±26,9	±22,6
			Ef	fort trar	chant r	ésistant	de calc	ıl à l'ELU	J fonda	mental	$v_{Rd,z}$ [ki	N/0,5m]			
Variante tranchant	(d'effort	VV1- VV5	±15,3	±22,9	±40,6	±22,9	±40,6	±!	59	±22,9	±4(0,6	±59	±78,6	±133,7

						MM4					MMS	5	
Schöck ISC	KORB	® ТТу	pe D	VV1	VV2	VV3	VV4	VV5	VV1	VV2	VV3	VV4	VV5
A	/ 6		:4:				Long	ueur de l'	ISOKORI	3® [mm]		
Assembla	ige / C	ompos	ition	500*	500*	500*	500*	500*	500*	500*	500*	500*	500*
Armatures t	raction	/ comp	ression			2 x 5 Ø	12				2 x 6 Ø	12	
Armatures p	our l'et	ffort trai	nchant	2 ×	2 ×	2 ×	3 ×	4 ×	2 ×	2 ×	2 ×	2 ×	2 ×
7 ii			- I Carrotte	3 Ø 6	3 Ø 8	3 Ø 10	4 Ø 10	4 Ø 12	3 Ø 6	3 Ø 8	3 Ø 10	4 Ø 10	4 Ø 12
		CV3	0	160	170	180	180	190	160	170	180	180	190
H_{min} [mm]		CV3		160	170	180	180	190	160	170	180	180	190
		CV5		200	200 210 220 220 230 200 210 220 220 230								
		age du											
		CV [mm	1		Mo	ment rési	stant de c	alcul à l'E	LU fonda	mental 1	$m_{Rd,y}$ [kN.	.m/0,5m]	
	CV30		CV50										
	1.50	160		±19,3	-	-	-	-	±23,4	-	-	-	-
	160		200	±20,5	-	-	-	-	±24,8	-	-	-	-
		170		±21,7		-	-	-	±26,2	±25,3	-	-	-
	170		210	±22,8	-	-	-	-	±27,6	±26,6	-	-	-
		180		±24,0		±21,8	±20,6	-	±29,0	±28,0	±26,9	±25,7	-
	180		220	±25,1		±22,9	±21,7	-	±30,5	±29,4	±28,2	±27,0	-
		190		±26,3		±23,9	±22,7	±19,9	±31,9	±30,7	±29,5	±28,2	±25,5
	190		230	±27,5	1	±25,0	±23,7	±20,8	±33,3	±32,1	±30,8	±29,5	±26,6
		200		±28,6		±26,1	±24,7	±21,7	±34,7	±33,4	±32,1	±30,7	±27,7
Hauteur de l'ISOKORB®	200		240	±29,8	-	±27,1	±25,7	±22,8	±36,1	±34,8	±33,4	±32,0	±28,9
H [mm]		210		±31,0	-	±28,2	±26,7	±23,4	±37,5	±36,2	±34,7	±33,2	±30,0
	210		250	±32,1	-	±29,2	±27,7	±24,3	±38,9	±37,5	±36,0	±34,5	±31,1
		220		±33,3	±31,8	±30,3	±28,7	±25,2	±40,3	±38,9	±37,3	±35,7	±32,2
	220			±34,5			±29,7	±26,1	±41,7	±40,2	±38,6	±36,9	±33,4
		230		±35,6	-	±32,4	±30,7	±27,0	±43,1	±41,6	±39,9	±38,2	±34,5
	230			±36,8	-	±33,5	±31,7	±27,9	±44,6	±42,9	±41,2	±39,4	±35,6
		240		±37,9	-		±32,7	±28,7	±46,0	±44,3	±42,5	±40,7	±36,8
	240			±39,1		±35,6	±33,7	±29,6	±47,4	±45,7	±43,8	±41,9	±37,9
		250		±40,3	/ -	-	±34,7	±30,5	±48,8	±47,0	±45,2	±43,2	±39,0
	250			±41,4	l		±35,7	±31,4	±50,2	±48,4	±46,5	±44,4	±40,1
	11			ranchan I	it résista I	nt de cal	cul à l'ELU I	fondame	ntal $v_{{\scriptscriptstyle R}d,z}$	[kN/0,5	m]		
	Variante d'effort tranchant VV1-VV5				±40,6	±59	±78,6	±133,7	±22,9	±40,6	±59	±78,6	±133,7

			_			мм6				
Schöck ISO	KORB	⁰ Т Тур€	e D	VV1	VV2	VV3	VV4	VV5		
A					Longu	ieur de l'ISOK	ORB® [mm]			
Assemblage / Compo	osition			500*	500*	500*	500*	500*		
Armatures supérieur	CV30 CV35 CV50 Enrobage du béton CV [mm] CV30 CV35 CV5 160 160 170 170 170 180 180 180 190 190 190 200 200 200 210 21		5			2 x 6 Ø 1	4			
Armatures diagonale	es			2 × 3 Ø 6	2 × 3 Ø 8	2 × 3 Ø 10	2 × 4 Ø 10	2 × 4 Ø 12		
	С	V30		160	170	180	180	190		
H _{min} [mm]	С	V35		160	170	180	180	190		
	С	V50		200	210	220	220	230		
	CV [r	nm]	1	Moment résistant de calcul à l'ELU fondamental $m_{{\scriptscriptstyle Rd},y}$ [kN.m/0,5m]						
		<u> </u>		±31,5	-	-	-	-		
	160		200	±33,4	-	-	-	-		
		170		±35,4	±34,4	-	-	-		
	170		210	±37,3	±36,3	-	-	-		
		180		±39,2	±38,2	±37,1	±36,0	-		
	180		220	±41,2	±40,1	±39,0	±37,8	-		
		190		±43,1	±42,0	±40,8	±39,5	±36,9		
	190		230	±45,1	±43,9	±42,6	±41,3	±38,5		
		200		±47,0	±45,8	±44,5	±43,1	±40,2		
Hauteur du	200		240	±49,0	±47,7	±46,3	±44,9	±41,8		
ISOKORB® H [mm]		210		±50,9	±49,6	48,1	46,7	43,5		
	210		250	±52,8	±51,5	±50,0	±48,4	±45,2		
		220		±54,8	±53,3	±51,8	±50,2	±46,8		
	220			±56,7	±55,2	±53,7	±52,0	±48,5		
		230		±58,7	±57,1	±55,5	±53,8	±50,1		
	230			±60,6	±59,0	±57,3	±55,6	±51,8		
		240		±62,5	±60,9	±59,2	±57,3	±53,5		
	240			±64,5	±62,8	±61,0	±59,1	±55,1		
		250		±66,4	±64,7	±62,8	±60,9	±56,8		
	250			±68,4	±66,6	±64,7	±62,7	±58,4		
		Effort tr	anchant rés	sistant de calcul	à l'ELU fondar	nental $v_{{\scriptscriptstyle R} d,z}$ [kN	I/0,5m]			
Variante d'effort trar	nchant		VV1-VV5	±22,9	±40,6	±59,0	±78,6	±133,7		


Vues de détail :

Longueurs des barres :

THE TOOKS DO THE		Lo	Longueurs minimales				
chöck ISOKORB® T Type	D	l_T (mm) (\emptyset)	<i>l_c</i> (mm) (Ø)	<i>l</i> _ν (mm) / Ø			
	VV1			344 / Ø6			
MM1	VV2			344 / Ø6			
	VV3			448 / Ø8			
	VV1			344 / Ø6			
MM2	VV2			448 / Ø8			
	VV3			516 / Ø10			
	VV1			344 / Ø6			
	VV2			448 / Ø8			
MM3	VV3			516 / Ø10			
	VV4			516 / Ø10			
	VV5	740 (Ø12)	740 (Ø12)	719 / Ø12			
	VV1			344 / Ø6			
	VV2			448 / Ø8			
MM4	VV3			516 / Ø10			
	VV4			516 / Ø10			
	VV5			719 / Ø12			
	VV1			344 / Ø6			
	VV2			448 / Ø8			
MM5	VV3			516 / Ø10			
	VV4			516 / Ø10			
	VV5			719 / Ø12			
	VV1			344 / Ø6			
	VV2			448 / Ø8			
MM6	VV3	890 (Ø14)	890 (Ø14)	516 / Ø10			
	VV4			516 / Ø10			
	VV5			719 / Ø12			

<u>Vue en plan :</u>

Entraxes des barres, exemple modèle T type D-MM3

Déformation (flèche complémentaire suivant §2.3.2.4.3)

Schöck ISOKORB® T Type D			MM1-MM6					
Factorina de défensestion		CV30	CV35	CV50				
Facteurs de déformation			tan α [%]					
	160	1,0	1,1	-				
	170	0,9	0,9	-				
	180	0,8	0,8	-				
	190	0,7	0,7	-				
Haustaur da HICOVORD® II [mm]	200	0,7	0,7	1,0				
Hauteur de l'ISOKORB® H [mm]	210	0,6	0,6	0,9				
	220	0,6	0,6	0,8				
	230	0,5	0,5	0,7				
	240	0,5	0,5	0,7				
	250	0,5	0,5	0,6				

ISOKORB® XT Type D (L = 1000 mm)

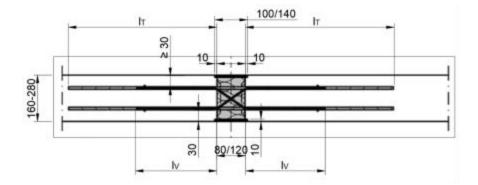
Valeurs de résistances du XT Type D pour un béton ≥C25/30 :

				MM1			MM2				
Schöck ISO	KORB® XT 7	Гуре D	VV1	VV2	VV3	VV1	VV2	VV3			
				Loi	ngueur de l'IS	OKORB® [mm]					
AS	ssemblage		1000	1000	1000	1000	1000 1000 1000 $2 \times 5 \emptyset 12$ $\times 6 \emptyset 6$ $2 \times 6 \emptyset 8$ $2 \times 6 \emptyset$ 160 170 180 200 210 220 ELU $m_{Rd,y}$ [kN.m/m] $\pm 17,9$ - $\pm 19,0$ - $\pm 20,1$ $\pm 17,9$ $\pm 21,1$ $\pm 18,8$ $\pm 22,2$ $\pm 19,8$ $\pm 16,7$ $\pm 23,3$ $\pm 20,8$ $\pm 17,5$ $\pm 24,4$ $\pm 21,7$ $\pm 18,5$ $\pm 25,4$ $\pm 22,7$ $\pm 19,7$				
Armatures tr	action / com	pression		2 x 4 Ø 12			2 x 5 Ø 12				
Armatures p	our l'effort tr	anchant	2 × 4 Ø 6	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 6	2 × 6 Ø 8	2 × 6 Ø 10			
u [mm]	CV35		160	160	170	160	170	180			
H_{min} [mm]	CV50		200	200	210	200	210	220			
	Enrobage CV [mm]	du béton		Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN.m/m]							
	CV35	CV50		1			1				
	160		±14,7	±13,8	-	±17,9	-	-			
		200	±15,5	±14,7	-	±19,0	-	-			
	170		±16,4	±15,5	±13,3	±20,1	±17,9	-			
		210	±17,3	±16,3	±14,0	±21,1	±18,8	-			
	180		±18,2	±17,1	±14,7	±22,2	±19,8	±16,7			
		220	±19,1	±18,0	±15,4	±23,3	±20,8	±17,5			
	190		±20,0	±18,8	±16,2	±24,4	±21,7	±18,3			
Hauteur de l'ISOKORB®		230	±20,8	±19,6	±16,9	±25,4	±22,7	±19,1			
H [mm]	200		±21,7	±20,5	±17,6	±26,5	±23,6	±19,9			
		240	±22,6	±21,3	±18,3	±27,6	±24,6	±20,7			
	210		±23,5	±22,1	±19,0	±28,7	±25,6	±21,5			
		250	±24,4	±23,0	±19,7	±29,8	±26,5	±22,3			
	220		±25,2	±23,8	±20,4	±30,8	±27,5	±23,2			
	230		±27,0	±25,5	±21,9	±33,0	±29,4	±24,8			
	240		±28,8	±27,1	±23,3	±35,2	±31,3	±26,4			
	250		±30,5	±28,8	±24,7	±37,3	±33,2	±28,0			
		Ef	fort tranchant r	ésistant de calc	cul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$	[kN/m]					
	d'effort trar VV1-VV3	nchant	±24,7	±37,1	±66,3	±37,1	±66,3	±103,3			

					ММЗ					MM4		
Schöck ISC)KORB® 2	XT Type D	VV1	VV2	VV3	VV4	VV5	VV1	VV2	VV3	VV4	VV5
A l- l						Long	ueur de l'I	SOKORB	® [mm]			
Assemblage			1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Armaturestr	action / c	ompression			2 x 7 Ø 1	.2				2 x 10 Ø	12	
Armatures p	our l'effo	rt tranchant	2 × 6 Ø6	2 × 6 Ø8	2 × 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12	2 × 6 Ø 6	2 × 6 Ø8	2 × 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12
II [mm]	C	CV35	160	170	180	180	200	160	170	180	180	200
H_{min} [mm]	C	CV50	200	210	220	220	230	200	210	220	220	230
	Enroba CV [mn	ge du béton n]			Mon	nent résist	ant de calc	ul à l'ELL	$J\; m_{{\scriptscriptstyle R}d,{\scriptscriptstyle y}}\; [k$	N.m/m]		
	CV35	CV50										
	160		±26.1	-	-	-		±38,3	-	-	-	-
		200	±27.6	ı	-	ı	-	±40,6	1	-	=	-
	170		±29.2	±27.0	ı	ı	1	±42,9	±40,7	-	-	1
		210	±30.8	±28.5	-	-	-	±45,2	±42,9	-	-	-
	180		±32.3	±29.9	±26.8	±23.9	-	±47,5	±45,1	±42,0	±39,1	-
		220	±33.9	±31.4	±28.1	±25.1	ı	±49,8	±47,3	±44,0	±41,0	ı
	190		±35.5	±32.8	±29.4	±26.3	±20.7	±52,2	±49,5	±46,1	±42,9	±37,4
Hauteur de		230	±37.1	±34.3	±30.7	±27.4	±21.6	±54,5	±51,7	±48,1	±44,8	±39,0
l'ISOKORB® H [mm]	200		±38,6	±35.7	±32.0	±28.6	±22.5	±56,8	±53,9	±50,2	±46,7	±40,7
		240	±40.2	±37.2	±33.3	±29.7	±23.4	±59,1	±56,1	±52,2	±48,6	±42,3
	210		±41.8	±38.6	±34.6	±30.9	±24.4	±61,4	±58,3	±54,2	±50,5	±44,0
		250	±43.3	±40.1	±35.9	±32.1	±25.3	±63,7	±60,4	±56,3	±52,4	±45,6
	220		±44.9	±41.5	±37.2	±33.2	±26.2	±66,0	±62,6	±58,3	±54,3	±47,3
	230		±48.0	±44.4	±39.8	±35.5	±28.0	±70,6	±6,0	±62,4	±58,1	±50,6
	240		±51.2	±47.4	±42.4	±37.9	±29.8	±75,2	±71,4	±66,5	±61,9	±53,9
	250		±54.3	±50.3	±45.0	±40.2	±31.7	±79,8	±75,8	±70,6	±65,7	±57,2
			Effo	rt tranch	ant résista	nt de calcu	l à l'ELU $v_{\scriptscriptstyle F}$	_{Rd,z} [kN/m	1]			
Variante tranchant	d'effort	VV1-VV5	±37,1	±66,3	±103,3	±137,7	±215,3	±37,1	±66,3	±103,3	±137,7	±215,3

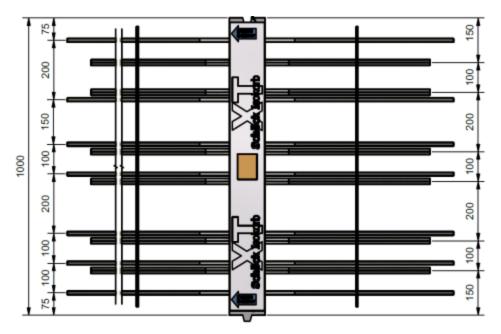
					мм5		
Schöck ISOK	ORB® XT Ty	pe D	VV1	VV2	VV3	VV4	VV5
Assemblage / Com	nosition			Longueu	ır de l'ISOKORB®	[mm]	
Assemblage / Com	position		1000	1000	1000	1000	1000
Armatures supérieur	es/inférieur	es			2 x12 Ø 12		
Armatures diagonale	s		2 × 6 Ø 6	2 × 6 Ø 8	2 x 6 Ø 10	2 × 8 Ø 10	2 × 8 Ø 12
H_{min} [mm]	CV	'35	160	170	180	180	190
11min [111111]	CV50		200	210	220	220	230
	Enrobage CV [du béton mm]	Moment r	ésistant de cal	lcul à l'ELU fondar	nental $m_{{\scriptscriptstyle R}d,y}$ [kN	l.m/m]
	CV35	CV50					
	160		±43,9	-	-	-	-
		200	±46,5	-	-	-	-
	170		±49,1	±49,9	-	-	-
		210	±51,8	±52,6	-	-	-
	180		±54,4	±55,2	±52,1	±49,3	-
		220	±57,1	±57,9	±54,7	±51,6	-
	190		±59,7	±60,6	±57,2	±54	±48,5
Hauteur de l'ISOKORB®		230	±62,3	±63,3	±59,7	±56,4	±50,6
H [mm]	200		±65	±66	±62,3	±58,8	±52,8
		240	±67,6	±68,7	±64,8	±61,2	±54,9
	210		±70,3	±71,3	±67,3	±63,6	±57,1
		250	±72,9	±74	±69,8	±66	±59,2
	220		±75,6	±76,7	±72,4	±63,4	±61,3
	230		±80,8	±82,1	±77,4	±73,2	±65,6
	240		±86,1	±87,4	±82,5	±77,9	±69,9
	250		±91,4	±92,8	±87,6	±82,7	±74,2
	Effort	tranchant re	ésistant de calcul	à l'ELU fondam	nental $v_{{\scriptscriptstyle R}d,z}$ [kN/m]	
Variante d'effort tran	chant	VV1-VV5	±37,1	±66,3	±103,3	±137,7	±215,3

ISOKORB® XT Type D (L = 500 mm)


Valeurs de résistances du XT Type D pour un béton ≥C25/30 :

				MM1			MM2	
Schöck ISO	KORB® XT	Туре D	VV1	VV2	VV3	VV1	VV2	VV3
_				Loi	ngueur de l'IS	GOKORB® [mm]		
As	ssemblage		500*	500*	500*	500*	500*	500*
Armatures tr	action / com	pression		2 x 2 Ø 12			2 x 3 Ø 12	
Armatures po	our l'effort tr	anchant	2 × 2 Ø 6	2 × 3 Ø 6	2 × 3 Ø 8	2 × 3 Ø 8	2 × 3 Ø 8	2 × 3 Ø 10
77 []	CV	35	160	160	170	160	170	180
H_{min} [mm]	cv	50	200	Solution Solution	220			
	Enrobage CV [mm]	du béton		Moment résis	tant de calcul	à l'ELU m_{nd} , [k]	N.m/0.5m1	
	CV35	CV50					, .,	
	160		±7,4	±6,9	-	±9,0	-	-
		200	±7,8	±7,4	-	±9,5	-	-
	170		±8,2	±7,8	±6,7	±10,1	±9,0	-
		210	±8,7	±8,2	±7	±10,6	±9,4	-
	180		±9,1	±8,6	±7,4	±11,1	±9,9	±8,4
		220	±9,6	±9,0	±7,7	±11,7	±10,4	±8,8
	190		±10	±9,4	±8,1	±12,2	±10,9	±9,2
Hauteur de l'ISOKORB®		230	±10,4	±9,8	±8,5	±12,7	±11,4	±9,6
H [mm]	200		±10,9	±10,3	±8,8	±13,3	±11,8	±10
		240	±11,3	±10,7	±9,2	±13,8	±12,3	±10,4
	210		±11,8	±11,1	±9,5	±14,4	±12,8	±10,8
		250	±12,2	±11,5	±9,9	±14,9	±13,3	±11,2
	220		±12,6	±11,9	±10,3	±15,4	±13,8	±11,6
	230		±13,5	±12,8	±11	±16,5	±14,7	±12,4
	240		±14,4	±13,6	±11,7	±17,6	±15,7	±13,2
	250		±15,3	±14,4	±12,4	±18,7	±16,6	±14,0
		Effc	ort tranchant ré	sistant de calcu	là l'ELU $v_{{\scriptscriptstyle R}{\scriptscriptstyle d,z}}$ [[kN/0,5m]		
	d'effort trar VV1-VV3	nchant	±12,4	±19,8	±35,1	±19,8	±35,1	±54,9

	Assemblage matures traction / compression matures pour l'effort tranchant CV35 CV50 Enrobage du bé CV [mm] CV35 CV50 160 200 170 210				ммз					MM4		
Schock ISOKO	RB® XI IY	ype D	VV1	VV2	VV3	VV4	VV5	VV1	VV2	VV3	VV4	VV5
_						Long	ueur de l'IS	SOKORB®	[mm]			
ASS	embiage		500*	500*	500*	500*	500*	500*	500*	500*	500*	500*
Armatures tract	ion / comp	ression			2 x 4 Ø 1	L2				2 x 5 Ø 1	L2	
Armatures pour	l'effort tra	nchant	2×6 Ø 6	2×3 Ø 6	2 × 3 Ø 10	2 × 4 Ø 10	2 × 4 Ø 12	2 × 3 Ø 6	2 × 3 Ø8	2 × 3 Ø 10	2 × 4 Ø 10	2 × 4 Ø 12
CV35			160	170	180	180	200	160	170	180	180	200
H_{min} [IIIIII]	CV50		200	210	220	220	230	200	210	220	220	230
					Momen	t résista	nt de calcu	l à l'ELU 1	$n_{Rd,y}$ [kN	.m/0,5m]	
	CV35	CV50										
	160		±13,1	-	-	-	-	±18,5	-	-	-	-
		200	±13,8	-	-	-	-	±19,6	-	-	-	-
	170		±14,6	±13,5	-	-	-	±20,7	±20,4	-	-	-
		210	±15,4	±14,3	-	-	-	±21,8	±21,5	-	-	-
	180		±16,1	±15	±13,4	±12	-	±23	±22,6	±21	±19,6	-
		220	±17	±15,7	±14,1	±12,6	-	±24,1	±23,7	±22	±20,5	-
	190		±17,8	±16,4	±14,7	±13,2	±10,4	±25,2	±24,8	±23,1	±21,5	±18,7
Hauteur de		230	±18,6	±17,2	±15,4	±13,7	±10,8	±26,3	±25,9	±24,1	±22,4	±19,5
I'ISOKORB® H [mm]	200		±19,3	±17,9	±16	±14,3	±11,3	±27,4	±27,0	±25,1	±23,4	±20,4
2		240	±20,1	±18,6	±16,7	±14,9	±11,7	±28,5	±28,1	±26,1	±24,3	±21,2
	210		±20,9	±19,3	±17,3	±15,5	±12,2	±29,6	±29,2	±27,1	±25,3	±22,0
		250	±21,7	±20,1	±18	±16,1	±12,7	±30,8	±30,2	±28,2	±26,2	±22,8
	220		±22,5	±20,8	±18,6	±16,6	±13,1	±31,9	±31,3	±29,2	±27,2	±23,7
	230		±24	±22,2	±19,9	±17,8	±14,0	±34,1	±33,5	±31,2	±29,1	±25,3
	240		±25,6	±23,7	±21,2	±19,0	±14,9	±36,3	±35,7	±33,3	±31,0	±27,0
	250		±27,2	±25,2	±22,5	±20,1	±15,9	±38,5	±37,9	±35,3	±33,4	±28,6
		Eff	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd},z}$ [kN/0,5m]									
Variante tranchant	d'effort	VV1-VV5	±19,8	±35,1	±54,9	±73,1	±105,3	±19,8	±35,1	±54,9	±73,1	±105,3


		_			мм5					ММ6		
Schöck ISOKO	RB® XT Ty	/pe D	VV1	VV2	VV3	VV4	VV5	VV1	VV2	VV3	VV4	VV5
						Longue	ur de l'ISC	OKORB®	[mm]			
Assemblage			500*	500*	500*	500*	500*	500*	500*	500*	500*	500*
Armatures inférieures	supérieure	es /	2 x 6 Ø 12						2	2 x 6 Ø 1	4	
Armatures diago	nales		2 × 3 Ø 6	2 × 3 Ø 8	2 × 3 Ø 10	2 × 4 Ø 10	2 × 4 Ø 12	2 × 3 Ø 6	2 × 3 Ø8	2 × 3 Ø 10	2 × 4 Ø 10	2 × 4 Ø 12
	CV	35	160	170	180	180	190	160	170	180	180	200
H_{min} [mm]	CV	50	200	210	220	220	230	200	210	220	220	230
	Enrobage béton CV [mm]			Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$ [kN.m/0,5m]								
	160	C V 30	±22	_	_	_	_	±30,1	_	_	_	_
	100	200	±23,3	_	_	-	_	±31,9	_	_	-	_
	170	200	±24,6	±25	-	-	-	±33,8	±32,7	_	_	_
		210	±25,9	±26,3	-	-	-	±35,6	±34,5	-	-	-
	180		±27,2	±27,6	±26,1	±24,7	-	±37,5	±36,3	±34,8	±33,4	-
		220	±28,6	±29	±27,4	±25,8	-	±39,4	±38,1	±36,5	±35,0	-
	190		±29,9	±30,3	±28,6	±27	±24,3	±41,2	±39,3	±38,2	±36,7	±33,9
Hauteur de		230	±31,2	±31,7	±29,9	±28,2	±25,3	±43,1	±41,7	±40,0	±38,3	±35,5
l'ISOKORB® H [mm]	200		±32,5	±33	±31,2	±29,4	±26,4	±44,9	±43,5	±41,7	±40,0	±37,0
		240	±33,8	±34,4	±32,4	±30,6	±27,5	±46,8	±45,3	±43,4	±41,6	±38,5
	210		±35,2	±35,7	±33,7	±31,8	±28,6	±48,6	±47,1	±45,1	±43,3	±40,1
		250	±36,5	±37	±34,9	±33	±29,6	±50,5	±48,9	±46,8	±44,9	±41,6
	220		±37,8	±38,4	±36,2	±31,7	±30,7	±52,4	±50,7	±48,6	±46,6	±43,1
	230		±40,4	±41,1	±38,7	±36,6	±32,8	±56,1	±54,3	±52,0	±49,9	±46,2
	240		±43,1	±43,7	±41,3	±39	±35	±59,8	±57,9	±55,5	±53,2	±49,2
	250				±43,8	±41,4	±37,1	±63,5	±61,5	±58,9	±56,5	±52,3
		E	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd},z}$ [kN/0,5m]									
Variante tranchant	d'effort	VV1- VV5	±19,8	±35,1	±54,9	±73,1	±105,3	±19,8	±35,1	±54,9	±73,1	±105,3

Vue de détail :

	Schöck ISOKORB® XT Type D	Lo	ngueurs minimales	
Sc	höck ISOKORB® XT Type D	$l_{\scriptscriptstyle T}$ (mm) Ø	l_c (mm) \emptyset	l _v (mm) / Ø
MM1 MM2 MM3	VV2 VV3 VV1 VV2 VV3 VV1 VV2 VV3			344 / Ø6 344 / Ø6 451 / Ø8 344 / Ø6 451 / Ø8 555 / Ø10 344 / Ø6 451 / Ø8 555 / Ø10
MM4	VV5 VV1 VV2 VV3 VV4 VV5 VV1 VV2 VV3	635 Ø12	635 Ø12	555 / Ø10 714 / Ø12 344 / Ø6 451 / Ø8 555 / Ø10 555 / Ø10 714 / Ø12 344 / Ø6 451 / Ø8 555 / Ø10 555 / Ø10
ММ6		890 Ø14	890 Ø14	714 / Ø12 344 / Ø6 451 / Ø8 555 / Ø10 555 / Ø10 714 / Ø12

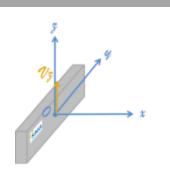
Vue en plan :

Entraxes des barres, exemple XT type D-MM3

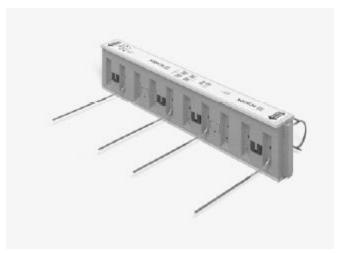
<u>Déformation (flèche complémentaire suivant §2.3.2.4.3)</u>

Schöck ISOKORB® XT Type D		MM1-	-мм6
Facteurs de déformation		CV35	CV50
racteurs de derormation		MM1-MM6 CV35 CV50 tan a [%] - 1,2 - 1,0 - 0,9 - 0,9 - 0,7 1,1 0,6 1,0 0,6 0,8 0,6 0,7 0,5 0,7 0,5 0,6	[%]
	160	1,2	-
	170	1,0	-
	180	0,9	-
	190	0,9	-
Hauteur de l'ISOKORB® H [mm]	200	0,7	1,1
Haddedi de HSOKOKB" H[Hilli]	210	0,6	1,0
	220	0,6	0,8
	230	0,6	0,7
	240	0,5	0,7
	250	0,5	0,6

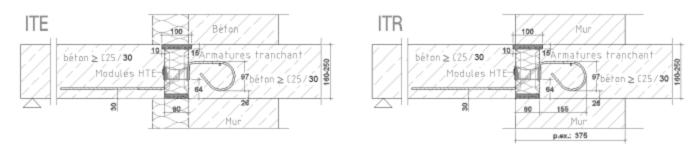
ISOKORB® T/XT Type Q


Liaisons dalle sur annui-facade

Toute la gamme de rupteurs de type Q est destinée à assurer la continuité linéique de l'isolation dans le plan vertical au droit d'une dalle extérieure sur appuis. Les éléments de compression sont constitués de modules de compression HTE, de barres ou butons métalliques.


Les types Q sont des rupteurs linéiques pour des dalles coulées sur place. Les modèles QF permettent aussi l'utilisation de prédalles. Il existe également une variante Q-VV permettant de reprendre des efforts tranchants positifs et négatifs. Les modèles Q-P et Q-PZ sont des rupteurs ponctuels.

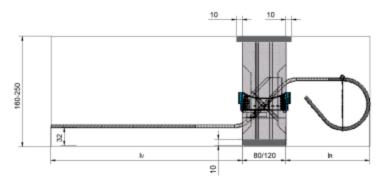
L'ensemble des rupteurs de type Q peuvent être équipés de plaques coupe-feu sans profilé PVC, en haut et en bas.


Pour les détails relatifs au traitement d'étanchéité, se reporter au paragraphe §2.3.6 à §2.3.8.

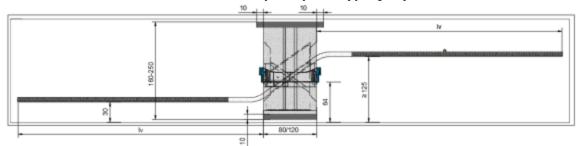
Modèle Q Standard

Vue complète du type Q (Exemple : T Type Q V1)

Modèle Q (Configuration ITE à gauche et ITR à droite)


ISOKORB® T Type Q

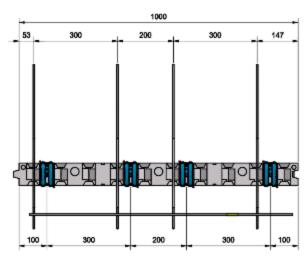
Valeurs résistantes pour un béton C25/30 :


diedrs resistantes pour un beton C23/30.												
Schöck ISOKORB® T Type Q	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd},z}$ [kN/m]											
	30,5	38,1	45,7	60,9	76,1	81,1	92,2	110,6	162,2	194,6	259,6	353,7
A a a a multiple of A Communications					Long	ueur de	e l'ISOKC	RB® [mr	m]			
Assemblage / Composition	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Armatures pour l'effort tranchant	4Ø6	5Ø6	6Ø6	8Ø6	10Ø6	6Ø8	5Ø10	6Ø10	5Ø12	6Ø12	8Ø12	8Ø14
Modules de compression HTE	4	4	4	4	4	4	4	4	6	6	8	8
Hauteur du module HTE [mm]	20	20	20	20	20	20	20	20	20	20	20	20
H _{min} pour R0 [mm]	160	160	160	160	160	170	170	170	180	180	180	200
H _{min} pour R120 [mm]	160	160	160	160	160	170	180	180	190	190	190	200

Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression HTE soient pris dans le béton frais.

Vue de détail :

Barre crossée (Exemple : T type Q-V1)



Barre droite (Exemple : T type Q-V6)

Longueurs des barres :

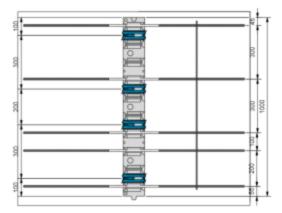
Cabilat TCOVORR® T.T	Longueurs minimales				
Schöck ISOKORB® T Type Q	l_v (mm) / Ø	$l_{\scriptscriptstyle R}$ (mm) / Ø			
V1 – V5	353 / Ø6	155 / Ø6			
V6	448 / Ø8				
V7 – V8	516 / Ø10	Dawn duaite			
V9 – V11	719 / Ø12	Barre droite = l_v			
V12	832 / Ø14				

Vue en plan:

Entraxes des barres (Exemple : T type Q-V1)

ISOKORB® XT Type Q

Valeurs résistantes pour un béton C25/30 :

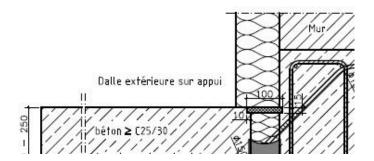

Schöck ISOKORB® XT Type Q	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [kN/m]										
	30,8	37,0	49,3	61,6	77,3	86,1	103,3	120,5	135,9	210,6	252,1
A constitution of Constitution	Longueur de l'ISOKORB® [mm]										
Assemblage / Composition	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Aciers de tranchant	5 Ø 6	6 Ø 6	8 Ø 6	10 Ø 6	7 Ø 8	5 Ø 10	6 Ø 10	7 Ø 10	8 Ø 10	8 Ø 12	8 Ø 14
Modules de compression HTE	4	4	4	4	4	4	5	6	6	8	8
Hauteur du module HTE [mm]	20	20	20	20	20	20	20	20	20	20	20
H _{min} pour REIO [mm]	160	160	160	160	160	170	170	170	170	180	190
H _{min} pour REI120 [mm]	160	160	160	160	170	180	180	180	180	190	200

Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression soient pris dans le béton frais.

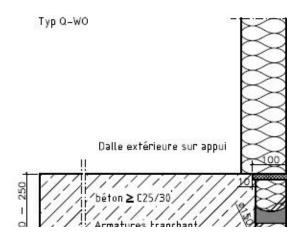
Longueurs des barres :

Cabilat TCOVORD® NT Tarra O	Longueurs minimales				
Schöck ISOKORB® XT Type Q	l_v (mm) / Ø	l_R (mm)/Ø			
V1 - V4	344 / Ø6	155 / Ø6			
V5	451 / Ø8				
V6 – V9	555 / Ø10	Danua duaita			
V10	714 / Ø12	Barre droite = l_v			
V11	826 / Ø14				

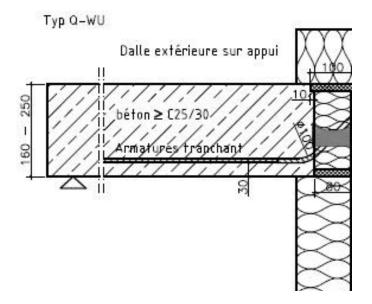
Vue en plan:



Entraxes des barres (Exemple : XT type Q-V6)


Variantes possibles du modèle Q (Les valeurs d'utilisation du modèle Q s'appliquent) :

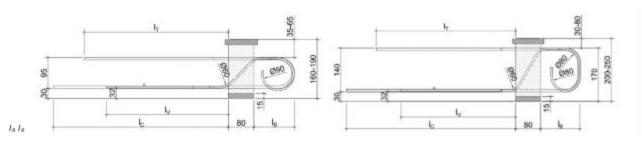
Variante HV pour le traitement des dalles extérieures sur appuis avec décalage vers le bas


Typ Q-HV

Variante WO pour le traitement des dalles extérieures sur appuis avec ancrage dans le voile haut

Variante WU pour le traitement des dalles extérieures sur appui avec ancrage dans le voile bas

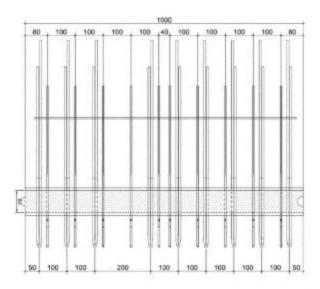
ISOKORB® T Type QFi


Le type QFi n'est pas couvert par les ETE du rupteur SCHOCK ISOKORB®. L'épaisseur de ce type est de 80 mm. Ses composants et son assemblage sont identiques aux rupteurs RUTHERMA® en ITI type DFi pour l'isolation par l'intérieur. Enfin, le type QFi ne dispose pas d'un marquage CE.

Valeurs de résistances du T Type QFi pour un béton ≥C25/30 :

Schöck ISOKORB® 1 Type QFi	Γ	V1*		V2		V3		V4		V5		V6	
Hauteur de l'ISOKORB® [mm	_	< 200	≥ 200	< 200	≥ 200	< 200	≥ 200	< 200	≥ 200	< 200	≥ 200	< 200	≥ 200
		Effort tranchant résistant de calcul à l'ELU $\it v$						i l'ELU $v_{\scriptscriptstyle R}$	_{d,z} [kN/m	1]			
		17,4	21,3	26,1	31,9	34,8	42,6	43,5	53,2	60,8	74,5	86,9	106,5
		Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd},{\scriptscriptstyle Y}}$, ${\scriptscriptstyle Y}$ [kN.m/m]											
		± 1,9	± 2,8	± 5,6	± 8,5	± 5,6	± 8,5	± 9,4	± 14,2	± 13,1	± 19,9	± 16,8	± 25,6
Assemblage /	, [Longueur de l'ISOKORB® [mm]											
Composition		10	00	1000		1000		1000		1000		1000	
Armatures diagonales		2 Ø 6		3 Ø 6		4 Ø 6		5 Ø 6		7 Ø 6		10 Ø 6	
Armatures er traction	n	1 Ø 8		3 Ø 8		3 Ø 8		5 Ø 8		7 Ø 8		9 Ø 8	
Armatures er compression	า	1 Ø 8		3 Ø 8		3 Ø 8		5 Ø 8		7 Ø 8		9 Ø 8	

^{*} le modèle QFi-V1 est placé dans le sens non-porteur des dalles extérieures


Vue de détail :

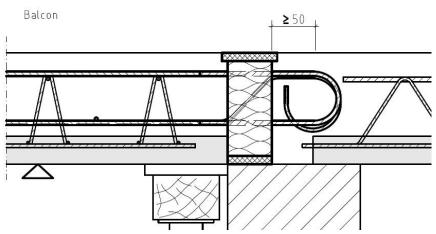
Longueurs des barres :

Cabilat TCOVODD® T Tarra OF:	Longueurs minimales							
Schöck ISOKORB® T Type QFi	l_{T} (mm)/Ø	l_c (mm)/Ø	l_v (mm) / Ø	l_R (mm)				
V1 - V6	470 / Ø8	565 / Ø8	390 / Ø6	100				

Vue en plan:

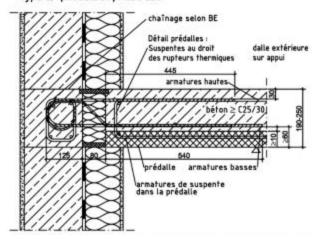
Entraxes des barres (Exemple : T type QFi-V6)

ISOKORB® T Type QF


Le type QF n'est pas couvert par les ETE du rupteur SCHOCK ISOKORB®. L'épaisseur de ce type est de 80 mm. Ses composants et son assemblage sont identiques aux rupteurs RUTHERMA en ITI type DF pour l'isolation par l'intérieur. Enfin, le type QF ne dispose pas d'un marquage CE.

Valeurs de résistances du T Type QF pour un béton ≥C25/30 :

<u>vareurs de resistances du 1-rype</u>	. Q. pour un beton =c25/50 .										
Schöck ISOKORB® T Type QF	V1*	V2	V 3	V4	V5	V6					
	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [kN/m]										
	17,4	26,1	34,8	43,5	60,8	86,9					
		Moment résistant de calcul à l'ELU $m_{{\scriptscriptstyle Rd}_{\scriptscriptstyle \mathcal{Y}}}$ [kN.m/m]									
	± 1,9	± 5,6	± 9,4	± 11,2	± 15,0	± 18,7					
Accombined (Commonities		Lon	gueur de l'IS0	OKORB® [mm]							
Assemblage / Composition	1000	1000	1000	1000	1000	1000					
Armatures diagonales	2 Ø 6	3 Ø 6	4 Ø 6	5 Ø 6	7 Ø 6	10 Ø 6					
Armatures supérieures	1 Ø 8	3 Ø 8	5 Ø 8	6 Ø 8	8 Ø 8	10 Ø 8					
Armatures inférieures	1 Ø 8	3 Ø 8	5 Ø 8	6 Ø 8	8 Ø 8	10 Ø 8					


^{*} le modèle QFi-V1 est placé dans le sens non-porteur des dalles extérieures

L'attention est attirée sur les suspentes à prévoir dans la prédalle le cas échéant, ainsi que sur les dimensions (de la prédalle) à réduire

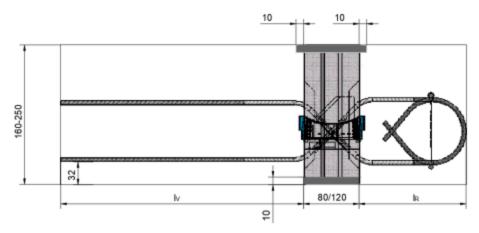
Exemple d'utilisation du type QF avec prédalles (Configuration ITR)

Type QF (modèle DF) H190-250

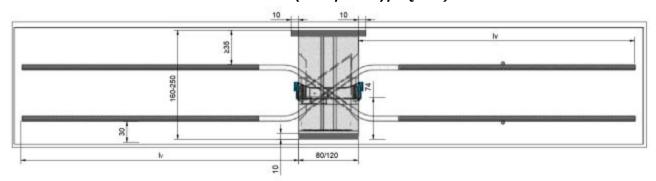
Exemple d'utilisation du type QF avec prédalles (Configuration ITE)

ISOKORB® T Type Q-VV

Ce modèle est le même que le modèle Q, mais il reprend également du soulèvement (efforts tranchants ascendants).

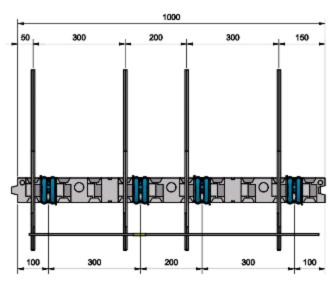

Le modèle Q-W permet de reprendre des efforts tranchants positifs et négatifs.

Valeurs de résistances du T Type Q-VV pour un béton ≥C25/30


Schöck ISOKORB® T Type Q	VV1	VV2	VV3	VV4	VV5	VV6	VV7	VV8	VV9	VV10
			Effort	tranchant	résistant d	e calcul à l	'ELU $v_{{\scriptscriptstyle R}{\scriptscriptstyle d},z}$ [kN/m]		
	±30,5	±38,1	±45,7	±60,9	±76,1	±81,1	±92,2	±110,6	±162,2	±194,6
Assemblage /				Long	ueur de l'I	SOKORB®	[mm]			
Composition	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Armatures effort tranchant	2 x 4 Ø 6	2 x 5 Ø 6	2 x 6 Ø 6	2 x 8 Ø 6	2 x 10 Ø 6	2 x 6 Ø 8	2 x 5 Ø 10	2 x 6 Ø 10	2 x 5 Ø 12	2 x 6 Ø 12
Modules de compression	4	4	4	4	4	4	4	4	6	6
Hmin pour REI0 [mm]	160	160	160	160	160	170	180	180	200	200
Hmin pour REI120 [mm]	160	160	160	160	160	170	180	180	200	200

Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression soient pris dans le béton frais.

Vue de détail :


Barre crossée (Exemple : T type Q-VV1)

Barre droite (Exemple : T type Q-VV6)

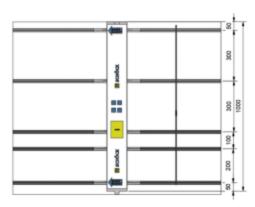
Longueurs des barres :

Cabilat ICOVODD® T Tura O VV	Longueurs minimales				
Schöck ISOKORB® T Type Q-VV	l_v (mm)/Ø	l_{R} (mm) / Ø			
VV1 – VV5	353 / Ø6	155 / Ø6			
VV6	448 / Ø8				
VV7 – VV8	516 / Ø10	Barre droite = l_{v}			
VV9 - VV10	719 / Ø12				

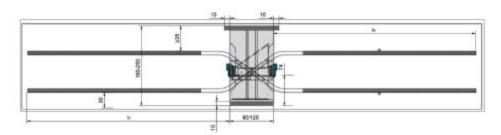
Entraxes des barres (Exemple : T type Q-VV1)

ISOKORB® XT Type Q-VV

Valeurs de résistances du XT Type Q-VV pour un béton ≥C25/30


Schöck ISOKORB®® XT Type Q	VV1	VV2	VV3	VV4	VV5	VV6	VV7	VV8
	Effort tran	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [kN/m]						
	±30,8	±37	±49,3	±61,6	±77,3	±86,1	±103,3	±120,5
Assemblage / Composition	Longueur de l'ISOKORB®® [mm]							
	1000	1000	1000	1000	1000	1000	1000	1000
Armatures pour l'effort tranchant	2 x 5 Ø 6	2 x 6 Ø 6	2 x 8 Ø 6	2 x 10 Ø 6	2 x 7 Ø 8	2 x 5 Ø 10	2 x 6 Ø 10	2 x 7 Ø 10
Modules de compression HTE	4	4	4	4	4	4	5	6
H _{min} pour REI0 [mm]	160	160	160	160	170	180	180	180
H _{min} pour REI120 [mm]	160	160	160	160	170	180	180	180

Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression soient pris dans le béton frais.


Longueurs des barres :

Cala ii ala TCOKODD® VI Tama O MV	Longueurs minimales				
Schöck ISOKORB® XT Type Q-VV	l_v (mm)/Ø	$l_{\scriptscriptstyle R}$ (mm) / Ø			
VV1 - VV4	344 / Ø6	155 / Ø6			
VV5	451 / Ø8	Down ducite 1			
VV6 - VV8	555 / Ø10	Barre droite = l_V			

Vue en plan:

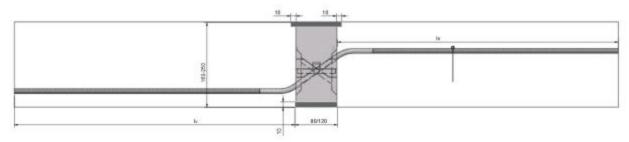
Entraxes des barres (Exemple : XT type Q-VV6)

Barre droite (Exemple : XT type Q-VV6)

Longueurs des barres :

Cabilat TCOVODD® VT Tama O VIV	Longueurs minimales				
Schöck ISOKORB® XT Type Q-VV	l_{V} (mm)/Ø	l_{R} (mm)/Ø			
VV1 - VV4	344 / Ø6	155 / Ø6			
VV5	451 / Ø8	Daniel de la la			
VV6 - VV8	555 / Ø10	Barre droite = $l_{\scriptscriptstyle V}$			

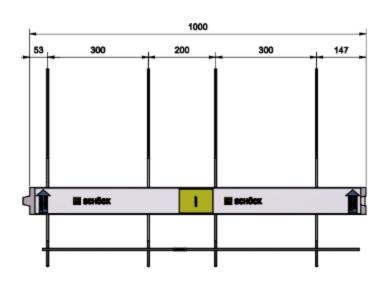
Pour ce modèle, il y a également lieu de veiller à ce que les modules de compression soient pris dans le béton frais.


ISOKORB® T Type Q-Z

Pour éviter des contraintes dues à la dilatation des dalles bétons à l'extérieur et le cas de deux rupteurs face à face, un des deux rupteurs doit être en version Q-Z. Cetype est le même que le Q-P mais sans butons, ce qui permet un grand déplacement.

Valeurs de résistances du T Type Q-Z pour un béton ≥C25/30

Schöck Isokorb® T Type Q-Z		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
Valeurs de résistance pour		Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [kN/m]									
Classe de résistance du béton	C25/30	30,5	38,1	45,7	60,9	76,1	81,1	92,2	110,6	162,2	194,6
					Longue	eur de l'I	SOKORB	® [mm]			
Assemblage		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Armatures de tranchant		4 Ø 6	5 Ø 6	6 Ø 6	8 Ø 6	10 Ø 6	6 Ø 8	5 Ø 10	6 Ø 10	5 Ø 12	6 Ø 12
Butons de compression		-	-	-	-	-	-	-	-	-	-
H _{min} pour REI0 [mm]		160	160	160	160	160	160	170	170	180	180
H _{min} pour REI120 [mm]		160	160	160	160	160	170	180	180	190	190


Vue de détail :

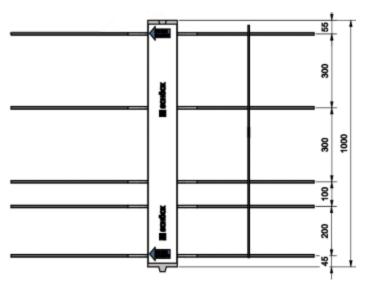
Longueurs des barres :

Longueurs des barres .								
Califal ICOVORD® T.Tama O. 7	Longueurs minimales							
Schöck ISOKORB® T Type Q-Z	l_v (mm) / Ø	l_{R} (mm) / Ø						
V1 – V5	353 / Ø6	155 / Ø6						
V6	448 / Ø8							
V7 – V8	516 / Ø10	Barre droite = l_v						
V9 - V10	719 / Ø12							

Vue en plan:

Entraxes des barres (Exemple : T Q-Z-V1)

ISOKORB XT Type Q-Z

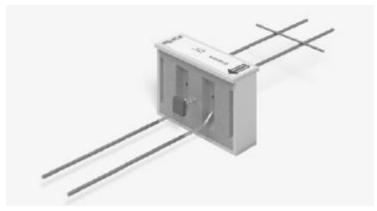

Valeurs de résistances du XT Type Q-Z pour un béton ≥ C25/30

Schöck Isokorb® XT Type Q-Z		V1	V2	V 3	V4	V5	V6	V7	V8	
Valeurs de résistance p	our	Effort tranchant résistant de calcul à l'ELU $v_{{\scriptscriptstyle Rd,z}}$ [kN/m]								
Classe de résistance du béton	C25/30	30,8	37,0	49,3	61,6	77,3	86,1	103,3	120,5	
A a a a web la ma		Longueur de l'ISOKORB® [mm]								
Assemblage		1000	1000	1000	1000	1000	1000	1000	1000	
Aciers de tranchant		5 Ø 6	6 Ø 6	8 Ø 6	10 Ø 6	7 Ø 8	5 Ø 10	6 Ø 10	7 Ø 10	
Butons de compression		ı	ı	ı	ı	ı	-	-	1	
H _{min} pour REI0 [mm]		160	160	160	160	160	170	170	170	
H _{min} pour REI120 [mm]	160		160	160	160	170	180	180	180	

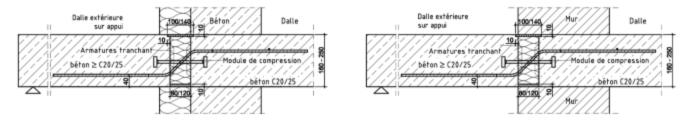
Longueurs des barres :

Califation Oppie VT Tarra O	Longueurs minimales				
Schöck ISOKORB® XT Type Q	l_v (mm) / Ø	l_R (mm) / Ø			
V1 – V4	344 / Ø6	155 / Ø6			
V5	451 / Ø8	Daniel de la company			
V6 – V8	555 / Ø10	Barre droite = l_v			

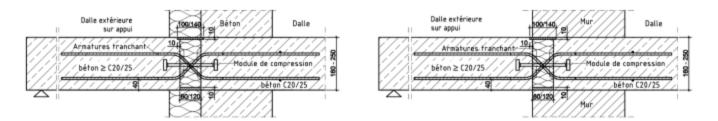
Vue en plan:

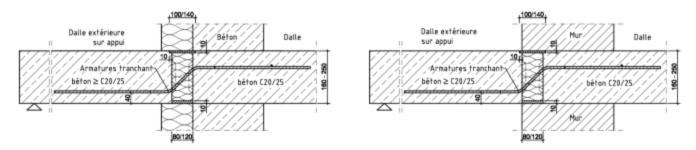


Entraxes des barres (Exemple : XT Q-Z V6)

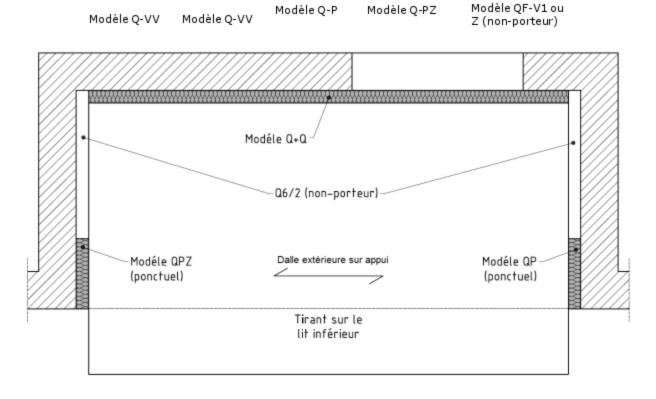

ISOKORB® T/XT Type Q-P (ponctuel)

Liaisons dalle sur appui ponctuel-façade


La gamme de rupteurs de type Q-P est destinée à assurer la continuité de l'isolation au droit d'une dalle extérieure sur appuis. Les modèles Q-P sont des rupteurs ponctuels pour lesquels existe également une variante Q-P-VV permettant de reprendre des efforts tranchants positifs et négatifs. Le modèle Q-PZ est équivalent au modèle Q-P, mais ne comporte pas de modules de compression pour autoriser la dilatation thermique de la dalle.


Vue 3D du Type Q-P

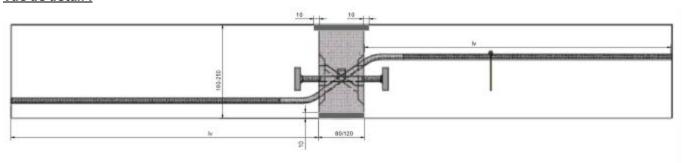
Modèle Q-P (Configuration ITE à gauche et ITR à droite)



Modèle Q-P-VV (Configuration ITE à gauche et ITR à droite)

Type Q-PZ (Configuration ITE à gauche et ITR à droite)

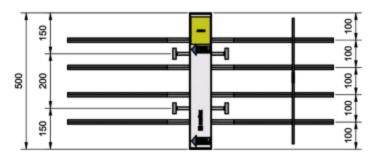
Le type Q-PZ doit nécessairement être placé en face d'un modèle Q-P comme indiqué sur le schéma de principe ci-après.


ISOKORB® T Type Q-P

Valeurs résistantes pour un béton C25/30 - T Type Q-P :

Schöck ISOKORB® T Type Q-P	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
	Effort tranchant résistant de calcul à l'ELU V_{RdZ} [kN/élément]									
	27,0	40,6	54,1	36,9	55,3	66,9	100,4	74,6	111,8	176,9
	Longueur de l'ISOKORB® [mm]									
Assemblage / Composition	300	400	500	300	400	300	400	300	400	500
Armatures pour l'effort tranchant	2 Ø 8	3 Ø 8	4 Ø 8	2 Ø 10	3 Ø 10	2 Ø 12	3 Ø 12	2 Ø 14	3 Ø 14	4 Ø 14
Butons de compression SCE	1 Ø 10	2 Ø 10	2 Ø 10	1 Ø 12	2 Ø 10	2 Ø 10	2 Ø 12	2 Ø 12	3 Ø 12	4 Ø 12
H _{min} pour REI0 [mm]	170	170	170	180	180	190	190	200	200	200
H_{min} pour REI120 [mm]	180	180	180	190	190	200	200	210	210	210

Pour ce modèle, il y a également lieu de veiller à ce que les butons de compression soient pris dans le béton frais. Ce type est le même que le type Q, mais sa largeur est inférieure à 1m (QP pour « Q Ponctuel »)


Vue de détail :

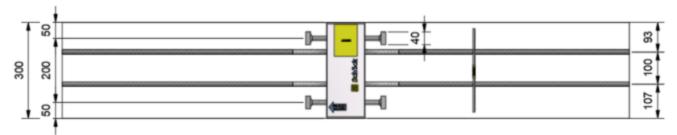
Longueurs des barres :

Cabilat ICOVORDO T Tura O D	Longueurs minimales				
Schöck ISOKORB® T Type Q-P	l_{v} (mm) / Ø				
V1 - V3	448 / Ø8				
V4 – V5	516 / Ø10				
V6 - V7	719 / Ø12				
V8 – V9	747 / Ø14				
V10	832 / Ø14				

<u>Vue en plan :</u>

Entraxes des barres (Exemple : T Q-P V4)

ISOKORB® XT Type Q-P


Valeurs résistantes pour un béton C25/30 - XT Type Q-P:

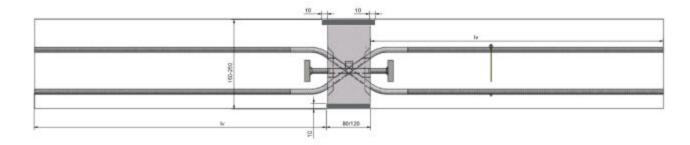
Schöck ISOKORB® XT Type Q-P	V1	V2	V 3	V4	V5	V6	V7	V8	V9	V10	
	Effort tranchant résistant de calcul à l'ELU $V_{{\scriptscriptstyle R}dZ}$ [kN/élément]										
	30,3	51,7	60,6	53,8	65,8	65,6	99,0	109,7	131,2	146,2	
		Longueur de l'ISOKORB® [mm]									
Assemblage / Composition	300	400	500	300	400	300	400	400	500	500	
Armatures pour l'effort tranchant	2 Ø 10	3 Ø 10	4 Ø 10	2 Ø 12	3 Ø 12	2 Ø 14	3 Ø 14	3 Ø 14	4 Ø 14	4 Ø 14	
Butons de compression SCE	1 Ø 14	2 Ø 12	2 Ø 14	2 Ø 14	2 Ø 14	2 Ø 14	3 Ø 12	4 Ø 12	4 Ø 14	5 Ø 12	
H _{min} pour REIO [mm]	180	180	180	190	190	200	200	200	200	200	
H _{min} pour REI120 [mm]	190	190	190	200	200	210	210	210	210	210	

Pour ce modèle, il y a également lieu de veiller à ce que les butons de compression soient pris dans le béton frais. Ce type est le même que le type Q, mais sa largeur est inférieure à 1m (QP pour « Q Ponctuel »)

Longueurs des barres :

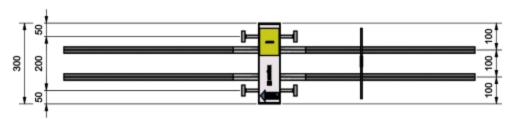
Schöck ISOKORB® XT Type Q-P	Longueurs minimales
SCHOCK ISOKOKB AT Type Q-P	$l_{\scriptscriptstyle V}=l_{\scriptscriptstyle R}$ (mm)/Ø
V1 - V3	555 / Ø10
V4 – V5	714 / Ø12
V6 - V10	826 / Ø14

Entraxes des barres (Exemple : XT Q-P V6)


ISOKORB® T Type Q-P-VV

Valeurs de résistances du T Type Q-P pour un béton C25/30

Schöck ISOKORB® T Type Q-P-VV	VV1	VV2	VV3	VV4	VV5	VV6	VV7	VV8	VV9	VV10
	Effort tranchant résistant de calcul à l'ELU $V_{{\scriptscriptstyle R}d_{\scriptscriptstyle Z}}$ [kN/élément]									
	±27,0	±40,6	±54,1	±36,9	±55,3	±66,9	±100,4	±74,6	±111,8	±176,9
				Longu	eur de l'	ISOKOR	B® [mm]			
Assemblage / Composition	300	400	500	300	400	300	400	300	400	500
Armatures pour l'effort tranchant	2 × 2 Ø 8	2 × 3 Ø 8	2 × 4 Ø 8	2 × 2 Ø	2 × 3 Ø	2 × 2 Ø	2 × 3 Ø 12	2 × 2 Ø 14	2 × 3 Ø 14	2 × 4 Ø 14
	200	300	400	10	10	12	3 Ø 12	2014	3 Ø 14	4 Ø 14
Butons de compression SCE	1 Ø 10	2 Ø 10	2 Ø 10	1 Ø 12	2 Ø 10	2 Ø 10	2 Ø 12	2 Ø 12	3 Ø 12	4 Ø 12
H _{min} pour REI0 [mm]	180	180	180	190	190	200	200	210	210	210
H _{min} pour REI120 [mm]	180	180	180	190	190	200	200	210	210	210


Pour ce modèle, il y a également lieu de veiller à ce que les butons de compression soient pris dans le béton frais. Ce type est le même que le type Q, mais sa largeur est inférieure à 1m (QP pour « Q Ponctuel »)

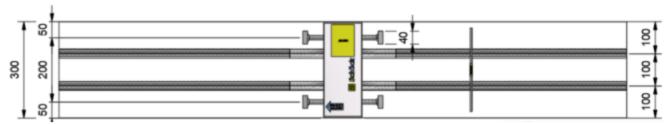
Vue de détail :

Longueurs des barres :

Sahäak ISOKOPP® T Tyra O P	Longueurs minimales
Schöck ISOKORB® T Type Q-P	$l_V = l_R \text{ (mm) / } \emptyset$
VV1 - VV3	448 / Ø8
VV4 – VV5	516 / Ø10
VV6 – VV7	719 / Ø12
VV8 - VV9	747 / Ø14
VV10	832 / Ø14

Entraxes des barres (Exemple : T Q-P VV6)

ISOKORB® XT Type Q-P-VV


Valeurs de résistances du XT Type Q-P-VV pour un béton ≥C25/30

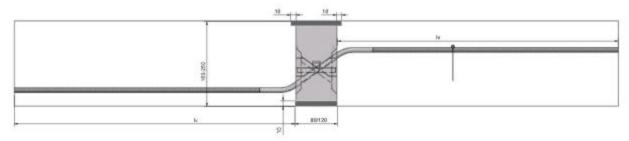
Schöck ISOKORB® XT Type Q-P	VV1	VV2	VV3	VV4	VV5	VV6	VV7	VV8	VV9	VV10	
	Effort tranchant résistant de calcul à l'ELU V_{RdZ} [kN/élément]										
	±30,3	±51,7	±60,6	±53,8	±65,8	±65,6	±99	±109,7	±131,2	±146,2	
A complete way (Commonistic m		Longueur de l'ISOKORB® [mm]									
Assemblage / Composition	300	400	500	300	400	300	400	400	500	500	
Armatures pour l'effort tranchant	2 x 2	2 x 3	2 x 4	2 x 2	2 x 3	2 x 2	2 x 3	2 x 3	2 x 4	2 x 4	
Armatares pour remore translant	Ø 10	Ø 10	Ø 10	Ø 12	Ø 12	Ø 14					
Butons de compression en acier	1 Ø 14	2 Ø 12	2 Ø 14	2 Ø 14	2 Ø 14	2 Ø 14	3 Ø 12	4 Ø 12	4 Ø 14	5 Ø 12	
H_{min} pour R0 [mm]	190	190	190	200	200	210	210	210	210	210	
H_{min} pour R120 [mm]	190	190	190	200	200	210	210	210	210	210	

Pour ce modèle, il y a également lieu de veiller à ce que les butons de compression soient pris dans le béton frais. Ce type est le même que le type Q, mais sa largeur est inférieure à 1m (QP pour « Q Ponctuel »)

Longueurs des barres :

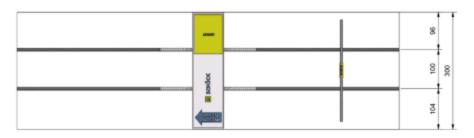
Schöck ISOKORB® XT Type Q-P	Longueurs minimales
SCHOCK ISOKOKD AT Type Q-P	$l_V = l_R \text{ (mm) / } \emptyset$
VV1 – VV3	555 / Ø10
VV4 – VV5	714 / Ø12
VV6 - VV10	826 / Ø14

Entraxes des barres (Exemple : XT Q-P VV6)


ISOKORB® T Type Q-PZ

Pour éviter des contraintes dues à la dilatation des dalles bétons à l'extérieur et le cas de deux rupteurs face à face, un des deux rupteurs doit être en version Q-PZ. Ce type est le même que le Q-P mais sans butons, et permet un grand déplacement.

Valeurs de résistances du T Type Q-PZ pour un béton ≥C25/30

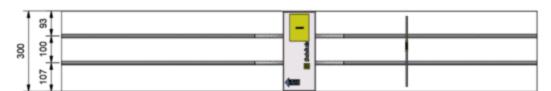

Schöck ISOKORB® T Type (Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10		
Valeurs de résistance pour		Effort tranchant résistant de calcul à l'ELU V_{RdZ} [kN/élément]											
Classe de résistance du béton C25/30		27,0	40,6	54,1	36,9	55,3	66,9	100,4	74,6	111,8	176,9		
Assemblage / Composition			Longueur de l'ISOKORB® [mm]										
		300	400	500	300	400	300	400	300	400	500		
Armatures pour l'effort tranche	ant	2 Ø 8	3 Ø 8	4 Ø 8	2 Ø 10	3 Ø 10	2 Ø 12	3 Ø 12	2 Ø 14	3 Ø 14	4 Ø 14		
Butons de compression SCE		-	-	-	-	ı	-	ı	-	-	-		
H_{min} pour REI0 [mm]		170	170	170	180	180	190	190	200	200	200		
H_{min} pour REI120 [mm]		180	180	180	190	190	200	200	210	210	210		

Vue de détail :

Longueurs des barres :

C-L"-LICOVORD® T.T O. D.T.	Longueurs minimales
Schöck ISOKORB® T Type Q-PZ	l_{V} (mm) / Ø
V1 - V3	448 / Ø8
V4 – V5	516 / Ø10
V6 - V7	719 / Ø12
V8 – V9	747 / Ø14
V10	832 / Ø14

Entraxes des barres (Exemple : T Q-PZ-V1)


ISOKORB XT Type Q-PZ

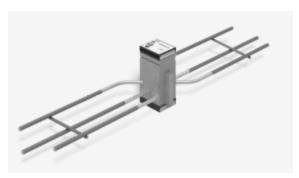
Valeurs de résistances du XT Type Q-PZ pour un béton ≥C25/30

Schöck ISOKORB® XT Type Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	
		Effort tranchant résistant de calcul à l'ELU V_{RdZ} [kN/élément]									
	30,3	51,7	60,6	53,8	65,8	65,6	109,7	109,7	146,2	146,2	
A complete of Composition		Longueur de l'ISOKORB® [mm]									
Assemblage / Composition	300	400	500	300	400	300	400	400	500	500	
Aciers de tranchant	2 Ø 10	3 Ø 10	4 Ø 10	2 Ø 12	3 Ø 12	2 Ø 14	3 Ø 14	3 Ø 14	4 Ø 14	4 Ø 14	
Butons de compression en acier	-	-	-	-	-	-	-	-	-	-	
H _{min} pour R0 [mm]	180	180	180	190	190	200	200	200	200	200	
H _{min} pour R120 [mm]	190	190	190	200	200	210	210	210	210	210	

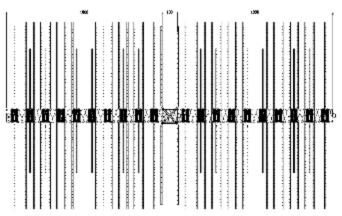
Longueurs des barres :

Schöck ISOKORB® XT Type Q-PZ	Longueurs minimales				
Schock ISOKORB® AT Type Q-P2	$l_{\scriptscriptstyle V}$ (mm) / Ø				
V1 - V3	555 / Ø10				
V4 – V5	714 / Ø12				
V6 – V10	826 / Ø14				

Entraxes des barres (Exemple : XT Q-PZ V6)

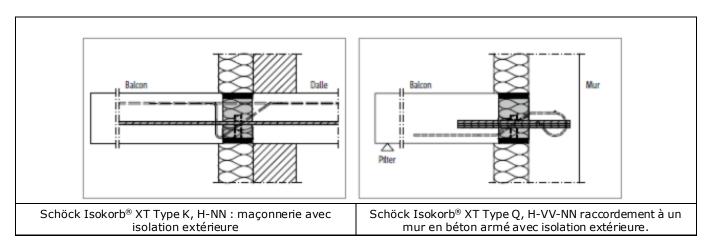

ISOKORB® T/TX Type H/ES

Reprise des efforts sismiques


Les rupteurs Type H/ES sont ponctuels (longueur < 1m). Ils sont destinés à reprendre des efforts horizontaux parallèles aux rupteurs dans l'épaisseur de la dalle. Ils doivent être utilisés en combinaison d'autres éléments linéaires (K, Q, etc...). Ils ne reprennent pas d'autres efforts (moment, tranchant, etc...), ceux-ci sont donc à répartir sur les modèles linéaires voisins.

Les types H/ES existent en épaisseurs d'isolation de 80 et 120 mm (ISOKORB® T/XT).

Ils peuvent être équipés de plaques coupe-feu prises sans ou avec profilé PVC. Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.



Modèle H donné à titre d'exemple

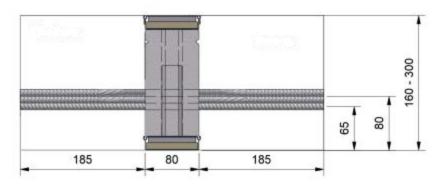
Exemple d'intégration types H avec type K

Vue en détail

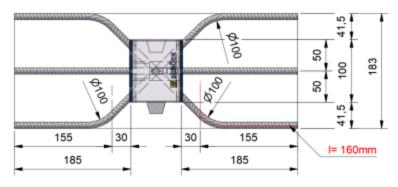
Exemple du choix d'utilisation des modules sismiques en fonction de la géométrie et des sollicitations

			Module si	ismique	
T/XT Type de base	Variante	H-NN	H-VV-NN	ES	ESi
	К	Х	X	Χ	Х
	KF	Χ	X	Χ	Χ
T 1/	K-HV	Χ	X		Χ
Type K	K-BH	Χ	X		Χ
	K-WO, K-O	Х	X		Χ
	K-WU, K-U	Χ	X		Χ
Type C*					
Type D		Χ	X	Χ	
	Q, QZ, Q- VV	Χ	X		
	QF, QFi	Х			Χ
T 0	Q-HV	Х	Х		
Type Q	Q-WO	Х	Х		
	Q-WU	Х	X		
	QP, QPZ, QPVV	Х	х		
Type F/O/A		Х	Х		Х

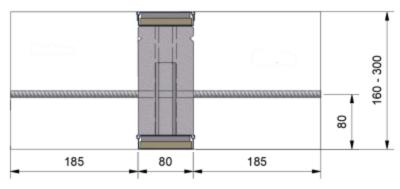
Ce tableau présente des combinaisons entre les rupteurs et les modules sismiques. Ces indications restent exhaustives.

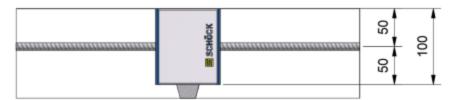

Pour limiter la sollicitation de ces éléments par la dilatation, il est conseillé de les regrouper au centre du balcon ou de la dalle extérieure sur appuis. Les rupteurs sismiques sont intercalés entre les autres rupteurs et espacés d'au moins 0,6 m entre axes.

^{*}Type C : pas de module sismique nécessaire si le rupteur est disposé dans un angle de balcon.


ISOKORB® T Type H

Valeurs de résistances du T Type H pour un béton ≥C25/30


Schöck ISOKORB® T Type H	NI	N1	N	N2	VV1	-NN1	VV2-NN1			
Accombined (Commonities		Longueur de l'ISOKORB® [mm]								
Assemblage / Composition	100		100		100		100			
Armatures diagonales horizontales	-		-		2 x 1 Ø 10		2 x 1 Ø 12			
Armatures en traction/compression	1 Ø	10	1 Ø 12		1 Ø 10		1 Ø 12			
Longueur des barres (mm)	18	35	530		185		530			
Effort de calcul résistant pour l'ELU	$V_{Rd,y}$ [kN]	N _{Rd,x} [kN]	V _{Rd,y} [kN]	N _{Rd,x} [kN]	V _{Rd,y} [kN]	N _{Rd,x} [kN]	V _{Rd,y} [kN]	N _{Rd,x} [kN]		
sismique	0	±11,6	0	±49,2	±10,4	±11,6	±39,2	±49,2		


Vue en coupe du modèle T H-NN1-VV1

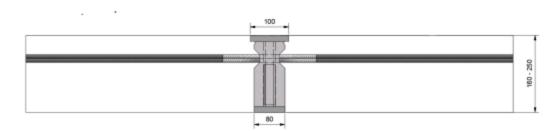
Vue en plan du modèle T H-NN1-VV1

Vue en coupe du modèle T H-NN1

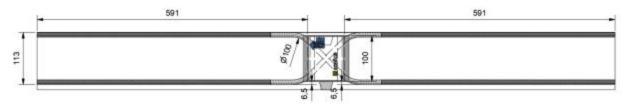
Vue en plan du modèle T H-NN1

ISOKORB® XT Type H

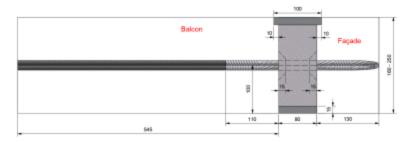
Valeurs de résistances du XT Type H pour un béton ≥C25/30


Schöck ISOKORB® XT Type H	NN1			NN2		I-NN1	VV2	-NN1	
Assemblage /		Longueur de l'IS0KORB® [mm]				nm]			
Composition		150		150		150		150	
Armatures diagonales horizontales	_			-	2 x 1 Ø 10		2 x 1 Ø 12		
Armatures en traction/compression	1 Ø 10		1	I Ø 12	1	Ø 10	1 (Ø 12	
Longueur des barres (mm)	185		530			185	5	30	
Effort de calcul résistant pour l'ELU sismique	$V_{Rd,y}$ [kN]	<i>N_{Rd,x}</i> [kN]	V _{Rd,y} [kN]	$N_{Rd,x}$ [kN]	V _{Rd,y} [kN]	$N_{Rd,x}$ [kN]	V _{Rd,y} [kN]	$N_{Rd,x}$ [kN]	
i ELO Sistilique	0	±11,6	0	±49,2	±10,4	±11,6	±39,2	±49,2	

ISOKORB® T Type ES/ESi


Ce type de rupteur n'existe qu'en gamme T (80mm).

Valeurs de résistances du T Type ES/ESi pour un béton ≥C25/30 :


Schöck ISOKORB® T Type	ES10/ESi10		
Assemblage / Composi	Longueur de l'ISOKORB® [mm]		
		100 (ES)) / 150 (ESi)
Armatures diagonales horizo	2 x 1 Ø 10		
Armatures en traction/comp			
Longuour dos barros (m	ES: 591 / 591		
Longueur des barres (m	111)	ESi:5	545 / 130
Valoure do résistance no	$V_{Rd,y}$	$N_{Rd,x}$	
valeurs de resistance po	Valeurs de résistance pour		[kN]
Classe de résistance du béton	C25/30	±24,15	0

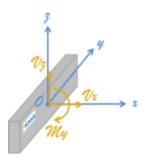
Vue en coupe du modèle T ES

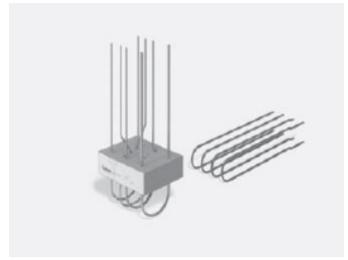
Vue en plan du modèle T ES

Vue en coupe du modèle T ESi

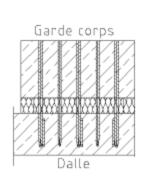
Vue en plan du modèle T ESi

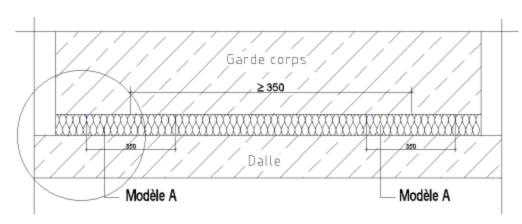
ISOKORB® T/XT Type A

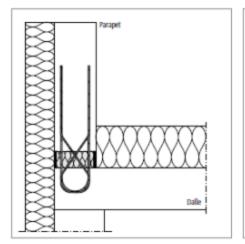

Liaisons dalle-acrotère

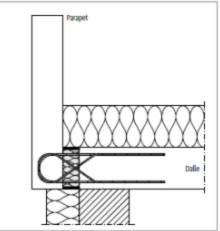

Le type A est destiné à assurer la continuité linéique de l'isolation dans le plan horizontal entre une dalle de plancher et un acrotère. Il permet de transmettre des efforts tranchants horizontaux, un moment de renversement et des efforts normaux verticaux depuis l'acrotère vers l'appui.

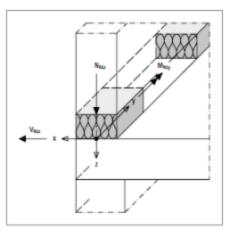
L'espacement de ce modèle, lorsqu'il est utilisé ponctuellement, se calcule en fonction des efforts à reprendre. Plus l'espacement des modèles est grand, plus l'acrotère aura tendance à se comporter comme une poutre sur appuis. Cet effet doit être pris en compte par le BE structure du projet dans le ferraillage de l'acrotère.

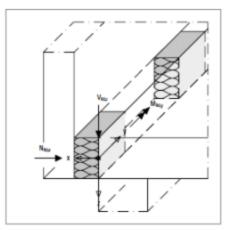

Entre les rupteurs ponctuels, il est possible de mettre en place des isolants ISOKORB $^{\otimes}$ type Z ou d'autres isolants étanches et incompressibles. L'isolant de ce type existe en 80 ou 120 mm.

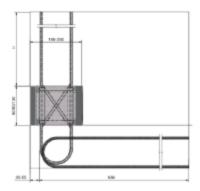

Il peut être équipé de plaques coupe-feu prises sans profilé PVC. Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.



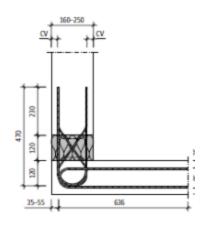


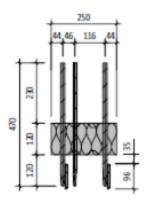

Vue complète du type A (Exemple : T Type A-MM2-VV1)



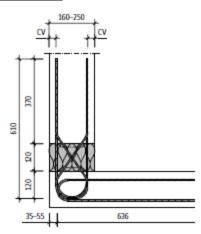


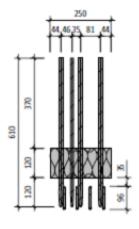
Valeurs de résistances du T/XT Type A pour un béton ≥C25/30 :

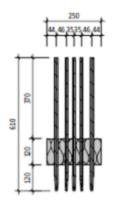

Schöck ISOKORB® T/XT Type A	MM1	MM2	АР
A - -	Longu	ieur de l'ISOKORE	ß® [mm]
Assemblage / Composition	250	250	250
Armatures en traction/compression	2 x 2 Ø 8	2 x 3 Ø 8	2 x 3 Ø 8
Armatures diagonales	1 Ø 6 + 1 Ø 6	1 Ø 6 + 1 Ø 6	2 Ø 6 + 2 Ø 6
Etriers de recouvrement	2 Ø 8	4 Ø 8	4 Ø 8
Acrotère B_{min}	160	160	160
Dalle h_{min} [mm]	160	160	160

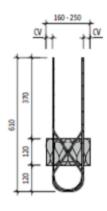

Schöck Isokorb® T/XT Typ	oe A	MM1 (B = 160- 250)	MM2 (B = 160- 190)	MM2 (B = 200- 250)	AP	
Valeurs de résistance pour		Dalle (XC1) Classe de résistance du béton ≥ C25/30 Acrotère (XC4) Classe de résistance du béton ≥ C25/30				
•		Moment	résistant de calcul à l'E	ELU $\mathit{M}_{\mathit{Rd},y}$ [kN.m/élément	:]	
	0,0	±1,68	±4,29	±6,16		
	5,0	±1,68	±4,29	±6,05		
	10,0	±1,68	±4,12	±5,74		
Effort normal résistant à l'ELU $N_{Rd,z}$ [kN/élément]	15,0	±1,68	±3,9	±5,43		
raz [, c.ee.e.	20,0	±1,47	±3,69	±5,12		
	25,0	±1,25	±3,47	±4,82		
	30	±1,04	±3,26	±4,51		
Effort tranchant résistant de ca l'ELU $V_{Rd,z}$ [kN/élément]	alcul à	±3,9	±6,7	±6,7	±6,7	

Vue de principe type A et Type AP:




Vues en détail T/XT type A-MM1 :




Vues en détail T/XT type A-MM2 :

Vues en détail T/XT type AP :

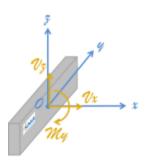
<u>Longueurs des barres :</u>

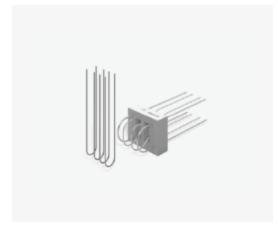
Califal TOOKODD® T.T A	Longueurs minimales	
Schöck ISOKORB® T Type A	$l_{\scriptscriptstyle T}$ (mm)	
MM1	270	
MM2 / AP	410	

Califata ICOKODD® NT Tarra A	Longueurs minimales	
Schöck ISOKORB® XT Type A	$l_{\scriptscriptstyle T}$ (mm)	
MM1	230	
MM2 / AP	370	

ISOKORB® T/TX Type F

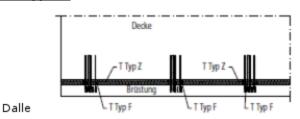
Liaisons dalle-acrotère

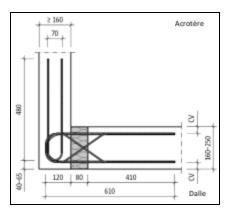

Le type F est destiné à assurer la continuité linéique de l'isolation dans le plan vertical entre une dalle de plancher et un acrotère en débord. Il permet de transmettre des efforts tranchant verticaux, un moment de renversement et des efforts normaux horizontaux depuis l'acrotère vers l'appui.


L'espacement de ce modèle, lorsqu'il est utilisé ponctuellement, se calcule en fonction des efforts à reprendre. Plus l'espacement des modèles est grand, plus l'acrotère aura tendance à se comporter comme une poutre sur appuis. Cet effet doit être pris en compte par le BE structure du projet dans le ferraillage de l'acrotère.

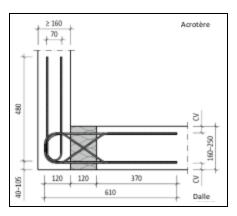
Entre les rupteurs ponctuels, il est possible de mettre en place des isolants ISOKORB® type Z ou d'autres isolants étanches et incompressibles.

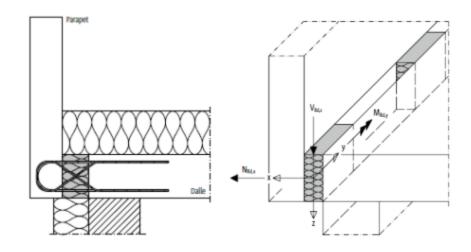
L'isolant de ce type existe en 80 ou 120mm.


Il peut être équipé de plaques silico-calcaires prises sans profilé PVC. Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.



Vue complète du type F (Exemple : T Type F-MM1)


Vue en plan de la mise en place des types F


Vues en détail

XT Type F X120

Schöck ISOKORB® T/XT Type F	MM1
Accombined (Commonities	Longueur de l'ISOKORB® [mm]
Assemblage / Composition	250
Armatures en traction/compression	2 x 2 Ø 8
Armatures diagonales	2 Ø 6 + 2 Ø 6
Etriers de recouvrement	4 Ø 6
Epaisseur de l'acrotère B_{min}	160
Epaisseur de la dalle h_{min} [mm]	160

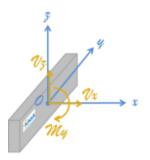
Valeurs de résistances du T/XT Type F pour un béton ≥ C25/30

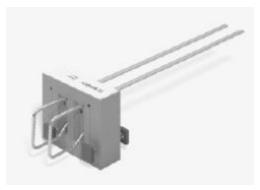
<u>Valeurs de resistances du 1/X1 Type F pour un beton ≥ C25/30</u>						
Schöck ISOKORB® T/XTT	уре F	MM1				
		Dalle (XC1) Classe de rési Acrotère (XC4) Classe de résistance du bé	istance du béton ≥ C25/30 eton ≥ C25/30			
		Effort N _{Ed,x}	Moment résistant de calcul à l'ELU $M_{Rd,y}$ [kN.m/élément]			
		$-40 \le N_{Ed,x} < 0$	$\pm 2,04 + 0,046 \cdot N_{Ed,x} $			
Hauteur de l'ISOKORB® H	160 - 190	$0 \le N_{Ed,x} \le 43,2$	±2,04			
		$43,2 < N_{Ed,x} \le 80$	\pm 4,03 - 0,046 · $N_{Ed,x}$			
[mm]		$-40 \le N_{Ed,x} < 0$	$\pm 2,93 + 0,066 \cdot N_{Ed,x} $			
	200 - 250	$0 \le N_{Ed,x} \le 43,2$	±2,93			
	230	$43,2 < N_{Ed,x} \le 80$	$\pm 5,78 - 0,066 \cdot N_{Ed,x} $			
Effort tranchant résistant de calcul à l'ELU $V_{{\scriptscriptstyle R}dz}$ [kN/élément]						
Hauteur de l'ISOKORB® H [mm]	160 - 190	±13	3,07			

Valeurs de résistances du T/XT Type F pour un béton ≥C25/30

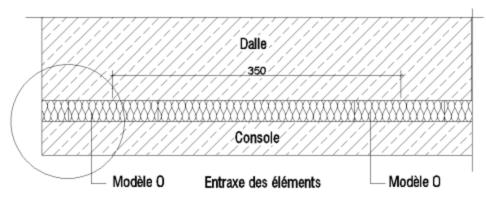
Schöck ISOKORB® T/XT Type F		MM1 (B = 160-190)	MM1 (B = 200-250)
		Dalle (XC1) Classe de Acrotère (XC4) Classe de rés	résistance du béton ≥ C25/30 sistance du béton ≥ C25/30
		Moment résistant de ca	lcul à l'ELU $M_{Rd,y}$ [kN.m/élément]
	-40,0	±0,19	±0,27
	-30,0	±0,62	±0,89
	-20,0	±1,05	±1,5
	-10,0	±1,47	±2,12
Effort normal résistant de calcul à l'ELU N_{Rdz} [kN/élément]	0-40,0	±1,9	±2,73
Raz [RH) element	50,0	±1,61	±2,31
	60,0	±1,19	±1,7
	70,0	±0,76	±1,08
	80,0	±0,33	±0,47

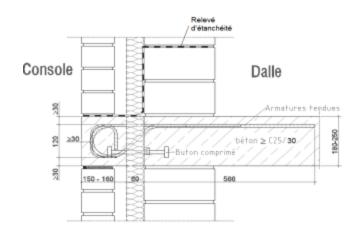
ISOKORB® T/TX Type O

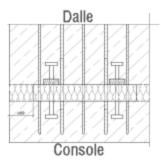

Liaisons dalle-console de support de doublage

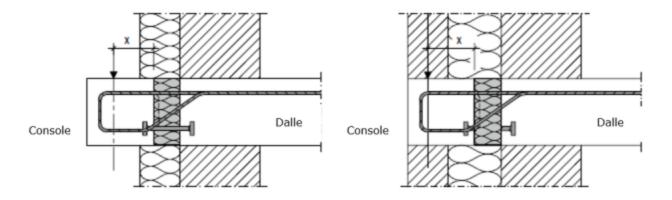

Le type O est destiné à assurer la continuité linéique de l'isolation dans le plan vertical entre une dalle de plancher et des consoles de petites dimensions (quelques dizaines de centimètres) soutenant des doublages de façade ou des éléments décoratifs. Il permet de transmettre des efforts tranchants et un moment depuis la console vers l'appui.

L'espacement de ce modèle, lorsqu'il est utilisé ponctuellement, se calcule en fonction des efforts à reprendre. Plus l'espacement des modèles est grand, plus la console aura tendance à se comporter comme une poutre sur appuis. Cet effet doit être pris en compte par le BE structure du projet dans le ferraillage de la console.

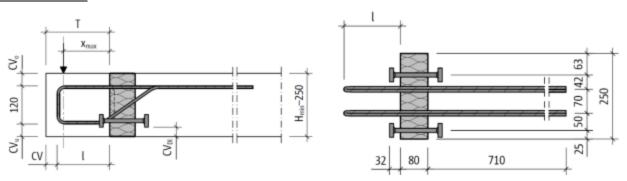

Entre les rupteurs ponctuels, il est possible de mettre en place des isolants ISOKORB $^{\otimes}$ type Z ou d'autres isolants étanches et incompressibles. L'isolant de ce type existe en 60, 80 ou 120mm.


Il peut être équipé de plaques silico-calcaires sans profilé PVC. Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.




Vue complète du type O (Exemple : T Type O-V1-M1-NN1)

Section



Valeurs de résistances du T/XT Type O pour un béton ≥C25/30 :

<u>Valeurs de résistances du T/XT Type O pour un béton ≥C25/30 :</u>					
Schöck ISOKORB® T/XT Type O		LR125	LR165		
Détail du montage pour		Longueur de l'ISOKORB® [mm]			
		250	250		
Armatures traction / effort trancha	int	2 Ø 8	2 Ø 8		
Armatures de compression		2 Ø 10	2 Ø 10		
Distance maximale x_{max} [mm]		105	145		
Hauteur minimale de la dalle H_{min}	[mm]	180	180		
Schöck ISOKORB® T/XT Type O)	LR125	LR165		
		Dalle: Classe de résistance du béton \geq C25/30 Acrotère: Classe de résistance du béton \geq C25/30 Effort tranchant résistant de calcul à l'ELU V_{Rdz} [kN/élément]			
60-75		23,4	23,4		
	85	22,6	22,6		
	95	21,6	21,6		
Position du point d'application de	105	20,7	20,7		
la charge x [mm]	115	-	19,9		
	125	-	19,1		
	135	-	10 5		
	133		18,5		
	145	-	17,8		
Effort normal résistant de calcul à	145	- kN/élément]	·		

<u>Vue en détail :</u>

Longueurs des barres :

Schöck ISOKORB® T Type O	L = LR125	L = LR165		
December do and dist	Longueur de l'I	Longueur de l'ISOKORB® [mm]		
Description du produit	250	250		
Longueur de la boude l[mm]	125	165		
Distance maximale x_{max} [mm]	105	145		
Largeur de la console T (CV30) [mm]	155	195		
Largeur de la console T (CV35) [mm]	160	200		
Hauteur minimale de la dalle H_{min} [mm]	180	180		

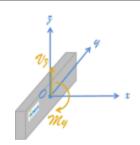
Schöck ISOKORB® XT Type O	LR125	LR165	
Description du paraduit	Longueur de l'ISOKORB® [mm]		
Description du produit	250	250	
Longueur de la boude [mm]	125	165	
Distance maximale x_{max} [mm]	105	145	
Largeur de la console T (CV30) [mm]	155	195	
Largeur de la console T (CV35) [mm]	160	200	
Hauteur minimale de la dalle H_{min} [mm]	180	180	

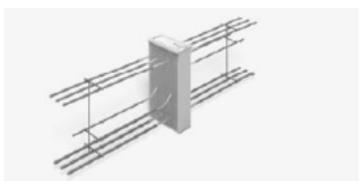
Enrobage (tous les aciers sont en acier inoxydable) :

Schöck ISOKORB® T/XT Type O	LR125, LR165			
Enrobage du béton		CV_o	CV_u	CV_{Dl}
	180	30	30	30
	190	35	35	35
	200	40	40	30
Llautaur da llICOKODD® []	210	45	45	35
Hauteur de l'ISOKORB® [mm]	220	50	50	40
	230	60	60	50
	240	70	70	60
	250	80	80	70

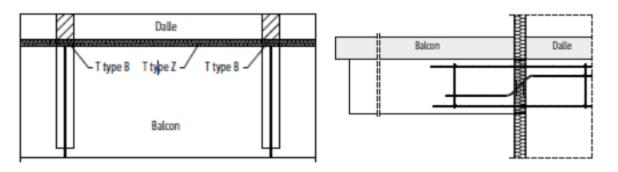
 $\label{lem:continuous} \text{Autres variantes possibles du type O (les valeurs d'utilisation du type O s'appliquent)}:$

- Variante O-WO pour le traitement des bandeaux avec ancrage dans le voile haut
- Variante O-WU pour le traitement des bandeaux avec ancrage dans le voile bas.


ISOKORB® T/XT Type B

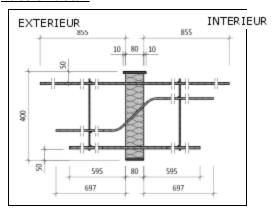

Liaisons console-refend (Anciennement Type S).

Le type B est destiné à assurer la continuité linéique de l'isolation dans le plan vertical entre un refend et une console servant d'appui à un balcon ou un auvent. Il permet de transmettre des efforts tranchants, et un moment depuis la console vers l'appui.


Ce modèle est ponctuel : un élément à prévoir pour chaque console.

Il peut être équipé de plaques silico-calcaires prises sans profilé PVC. Pour les détails de traitement d'étanchéité, se reporter aux paragraphes §2.3.6 à §2.3.8.

Vue complète du type B (Exemple : T Type B)



Valeurs de résistances du T/XT Type B pour un béton ≥C25/30

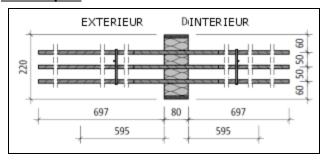
Schöck ISOKORB® T/XT Type B	M1	M2	М3	M4		
Accompliance (Commonistic m	Hauteur de l'ISOKORB® H [mm]					
Assemblage / Composition	400	400	400	400		
Largeur de l'ISOKORB®	220	220	220	220		
Armatures supérieures	3 Ø 10	3 Ø 12	3 Ø 14	3 Ø 16		
Longueur des barres de traction (adhérence médiocre, T)	855	1020	1180	1890		
Longueur des barres de traction (adhérence médiocre, XT)	835	1000	1160	1870		
Armatures diagonales	2 Ø 8	2 Ø 10	2 Ø 12	2 Ø 14		
Armatures inférieures	3 Ø 12	3 Ø 14	3 Ø 16	3 Ø 20		
Longueur des armatures inférieures (T)	595	565	635	840		
Longueur des armatures inférieures (XT)	460	535	675	820		

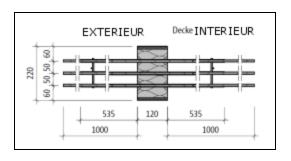
Schöck ISOKORB® T/XT Type B	M1	M2	M3	M4		
Moment résistant de calcul à l'ELU $M_{Rd,y}$ [kN.m/élément]						
Hauteur de l'ISOKORB® H [mm]	400	-28,6	-39,0	-51,7	-71,1	
Effort tranchant résistant de calcul à l'ELU V_{Rdz} [kN/élément]						
Hauteur de l'ISOKORB® H [mm]	400	30,5	47,2	68,2	91,7	

Vues en détail

EXTERIEUR INTERIEUR

1000 1000

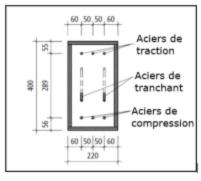

10 120 10


S 535 120 535 843

T Type B

XT Type B

Vues en plan

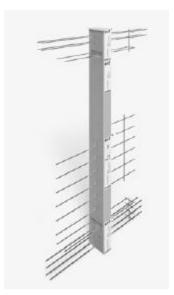


Т Туре В

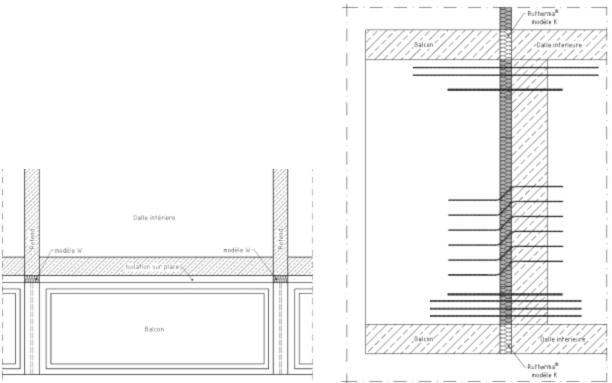
XT Type B

Vue en coupe type B-R120:

<u>Distance maximale entre les joints de fractionnement (selon Annexe 1) :</u>


Schöck ISOKORB® T/XT Type B		M1	M2	мз	M4
Distance maximale entre les joints de frac	e [m]				
Engineers de l'inclant [mm]	80	11,7	10,1	9,2	8,0
Epaisseur de l'isolant [mm]	120	19,8	17,0	15,5	13,5

ISOKORB® T/XT Type W


Liaisons refends traversants

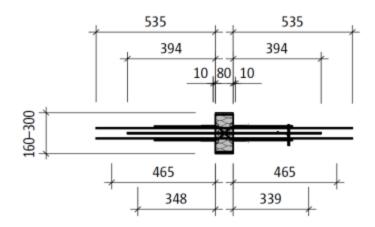
Le type W est destiné à assurer la continuité linéique de l'isolation dans le plan vertical entre un refend intérieur et sa prolongation extérieure, comme illustré sur le schéma ci-après. Il permet de transmettre des efforts tranchant descendants, un moment et un effort tranchant horizontal depuis la prolongation vers l'appui.

Ce modèle est ponctuel dans le plan : un élément à prévoir pour chaque refend. Il couvre toute la hauteur du refend. Il peut être équipé de plaques silico-calcaires prises sans profilé PVC.

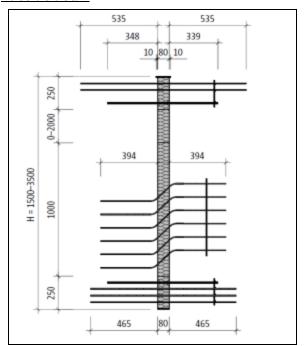
Vue complète du type W (Exemple : T Type W)

Exemple d'utilisation du modèle W (vue en plan et coupe)

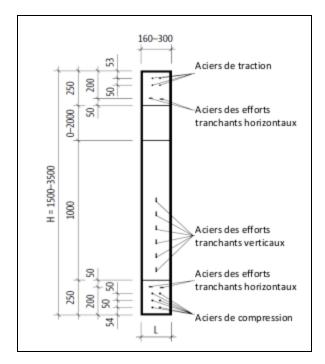
ISOKORB® T Type W


Valeurs résistantes pour un béton C25/30 :

Schöck ISOKORB® T Type W		M1	M2	М3	M4		
		Largeur de l'élément L [mm]					
		150-300	150-300	150-300	150-300		
Armatures de traction		4 Ø 6	4 Ø 8	4 Ø 10	4 Ø 12		
Armatures de compression	n	6 Ø 8	6 Ø 10	6 Ø 12	6 Ø 14		
Armatures diagonales ve	ticales	6 Ø 6 6 Ø 8 6 Ø 10 6					
Armatures diagonales ho	rizontales	les 2 × 2 Ø 6 2 × 2 Ø 6 2 × 2 Ø 6 2					
L_{min} pour REI0 [mm] (lar	geur)	150	150	150	150		
L_{min} pour REI90 [mm] (la	rgeur)	160	160	160	160		
		Moment résistant de calcul à l'ELU $M_{Rd,y}$ [kN.m/élément]					
	1500-1990	-60,5	-107,3	-167,5	-136,9		
	2000-2490	-83,4	-148,2	-231,3	-189,0		
	2500-3500	-106,4	-189,0	-295,0	-241,2		
Hauteur de l'ISOKORB®	Effort tranchant résistant de calcul à l'ELU $V_{{\scriptscriptstyle R}d_{\scriptscriptstyle Z}}$ [kN/élément]						
H [mm]	1500-3500	48,7	86,5	135,2	194,7		
	Effort tranchant résistant de calcul à l'ELU $V_{{\scriptscriptstyle Rd},{\scriptscriptstyle U}}$ [kN/élément]						
	1500-3500	±16,2	±16,2	±16,2	±16,2		


Longueurs des barres :

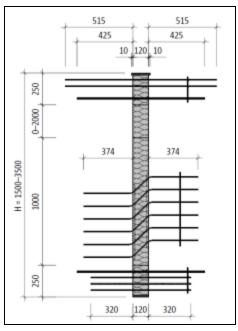
Schöck ISOKORB® T Type W	M1	M2	М3	M4
Armatures de traction (mm)	535	740	855	1020
Armatures de compression (mm)	465	535	595	565
Armatures diagonales verticales (mm)	394	502	623	742
Armatures diagonales horizontales (mm)	348	348	348	348


Vue en plan T Type W-M1:

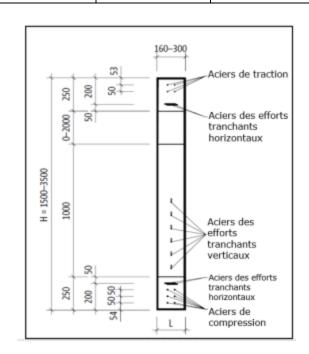
Vues de détail

T Type W

ISOKORB® XT Type W

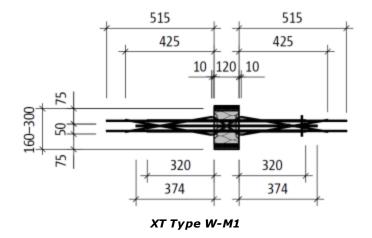

Valeurs résistantes pour un béton C25/30 :

Schöck ISOKORB®	XT Type W	M1	M2	мз	M4			
A	_	Largeur de l'ISOKORB® L [mm]						
Assemblage / Composition		150-300	150-300	150-300	150-300			
Armatures de traction		4 Ø 6	4 Ø 8	4 Ø 10	4 Ø 12			
Armatures de compression	on	6 Ø 8	6 Ø 10	6 Ø 12	6 Ø 14			
Armatures diagonales ve	rticales	6 Ø 6	6 Ø 8	6 Ø 10	6 Ø 12			
Armatures diagonales ho	rizontales	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6	2 × 2 Ø 6			
L_{min} pour REI0 [mm] (lar	150	150	150	150				
L_{min} pour REI90 [mm] (la	rgeur)	160	160	160	160			
		Moment résistant de calcul à l'ELU $M_{Rd,y}$ [kN.m/élément]						
	1500-1990	-54,7	-94,6	-144,6	-106,0			
	2000-2490	-75,4	-130,7	-199,6	-146,4			
	2500-3500	-96,1	-166,6	-254,6	-186,9			
Hauteur de l'ISOKORB® H [mm]		Effort tranchar	nt résistant de calcul à	\dot{a} l'ELU $V_{Rd,z}$ [kN/élément]				
11 [11111]	1500-3500	48,7	86,5	135,2	194,7			
		Effort tranchar	nt résistant de calcul à	\dot{a} l'ELU $V_{Rd,y}$ [kN/élément]				
	1500-3500	±12,5	±12,5	±12,5	±12,5			


Longueurs des barres :

<u> </u>				
Schöck ISOKORB® XT Type W	M1	M2	М3	M4
Armatures supérieures (mm)	515	675	835	1000
Armatures inférieures (mm)	320	390	460	535
Armatures diagonales verticales (mm)	374	482	603	739
Armatures diagonales horizontales (mm)	425	425	425	425

<u>Vues de détail</u>

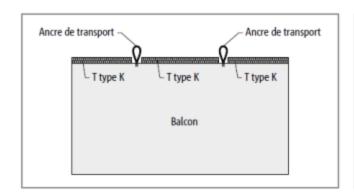


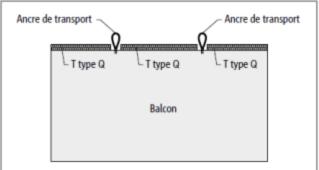
XT Type W

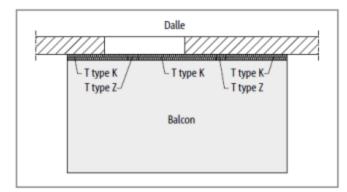
T Type W

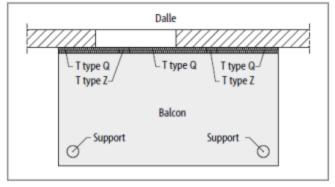
Vue en plan:

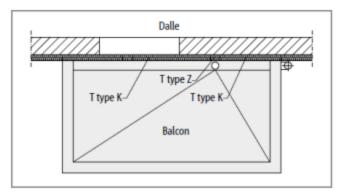
ISOKORB® T/XT Type Z/ZS

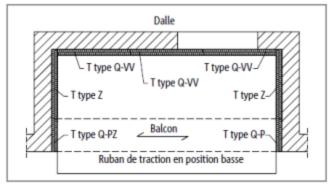

Complément d'isolation

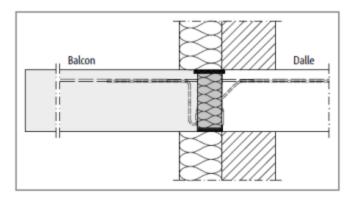

Type Z : Corps d'isolant en NEOPOR $^{\textcircled{8}}$, sans aciers, ne reprenant aucun effort, avec ou sans plaques coupe-feu (EI0, EI90, EI120).

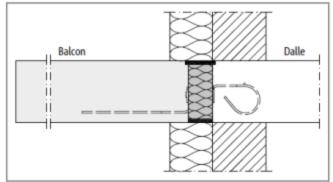

Les modèles ZS sont des lamelles complémentaires de faible hauteur avec des bandes adhésives double faces, sans plaques coupe-feu.



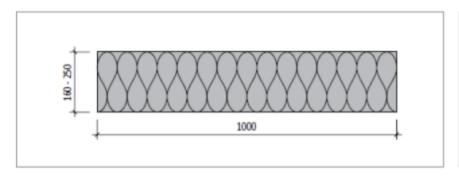

Dispositions d'éléments

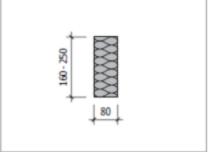




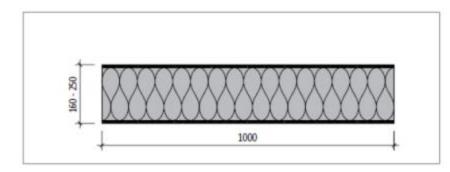


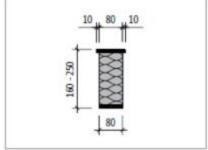
Vues de détail

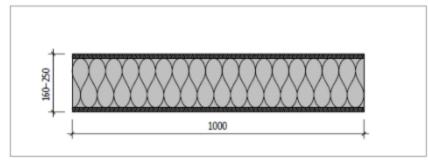


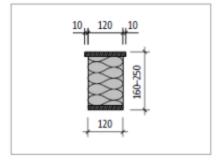


Schöck ISOKORB® T/XT type Z+K en ITE Schöck ISOKORB® T/XT type Z+Q en ITE

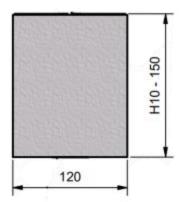

Exemples

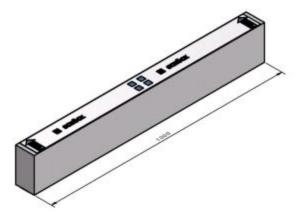

SCHÖCK ISOKORB® Type Z-EI0-X80/X120

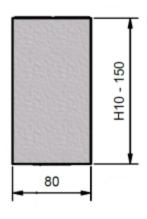




SCHÖCK ISOKORB® Type Z-EI90/120-T-X80/X120:






Le complément d'isolation type ZS en NEOPOR dispose d'une bande adhésive en partie inférieure afin de venir le coller sur ou sous le rupteur pour compenser une hauteur de dalle.

Ce complément existe en gamme 80 mm (T) et 120 mm (XT) et a une épaisseur comprise entre 10 et 150 mm (avec un pas de 10 mm).

SCHÖCK ISOKORB® Type ZS-X80 / ZS-X120 :

ANNEXE 4 : Calcul Thermique – Valeur de calcul des ponts thermiques en ITE/ITR 4.1 Hypothèses et conditions aux limites

Hypothèses de calcul: géométrie

- Les armatures métalliques ont été modélisées avec une section carrée équivalente.
- Les armatures en partie centrale, traversant l'isolant du rupteur, sont en acier inoxydable. Le reste de l'armature est en acier noir.
- Les boucles d'acier et les armatures en diagonale sont approchées par des géométries en forme de marches d'escalier.
- Les plots de béton UHPC (butons de compression) de formes complexes sont modélisés par des blocs équivalents dont la géométrie est schématisée dans l'étude du CSTB. Par ailleurs, les dimensions des plots modélisés ont été déterminés de telle manière à obtenir un volume équivalent égale au volume réel. La coque en matériau plastique recouvrant les plots n'est pas modélisée, elle est remplacée par du béton UHPC. Les dimensions de l'appui de compression varient en fonction du type de rupteur.
- Pour la liaison mur-plancher haut en L9 et L10, il y a trois cas de figures :
 - o Mur-Plancher haut avec acrotère + rupteur horizontal (Type A)
 - o Mur-Plancher haut avec acrotère + rupteur vertical (Type F,O)
 - Mur + rupteur vertical sur lequel est mis en œuvre un plancher haut avec un débord en surplomb (balcon ou casquette) dont l'isolation est filante.

Hypothèses de calcul: conductivités thermiques des matériaux

Toutes les simulations ont été effectuées conformément aux règles Th-Bât. Les modèles géométriques pour le calcul sont directement issus des éléments techniques fournis par le titulaire. Les conditions aux limites sont des Règles Th-Bât. Les conductivités thermiques utiles prises en compte dans le calcul sont les suivantes :

- Béton (épaisseur 180 mm), Acier noir, profilés PVC, coffrage HD-PE: selon Th-Bât Edition 2020
- Noyau béton UHPC (module de compression HTE): 1,36 W/(m.K)
- Acier inoxydable (y compris le buton de compression): NF EN 10088-1
- Corps isolant (polystyrène expansé): 0,032 W/(m.K)⁽¹⁾ (ACERMI n°07/015/455)
- Plaques coupe-feu⁽²⁾:
 - o AESTUVER: 0,28 W/(m.K)
 - BATIBOARD A: 0,162 W/(m.K)
 - $_{\circ}$ SILLATHERM SPH: 0,045 W/(m.K)
- Isolant mur (épaisseur 160 mm): 0,040 W/(m.K)
- Isolant toit (épaisseur 120 mm): 0,024 W/(m.K)
- Maçonnerie isolante type a (mur extérieur en ITR)⁽³⁾: 0,15 W/(m.K)
- Maçonnerie isolante type b (mur extérieur en ITR)⁽³⁾: 0,3 W/(m.K)
- Béton cellulaire⁽³⁾: 0,11 W/(m.K)

Notes:

(1) Valeur certifiée de 0,031 W/(m.K) selon certificat ACERMI n°18/237/1362. La valeur plus défavorable de 0,032 W/(m.K) a été choisie en considérant un facteur de sécurité de 1 mW/(m.K).

(2) Etant donné que plusieurs matériaux de plaque coupe-feu sont possibles, les valeurs PSI retenues sont celles qui sont les plus défavorables (côté sécuritaire).

(3) Uniquement pour les calculs de ponts thermiques en ITR (Rapport d'étude du CSTB n° DEB/R2EB-2022-155-KZ-NA/NZ)

Hypothèses de calcul : Conditions aux limites

Conditions aux limites	Températures d'ambiance [°C]	Coefficient d'échange superficiel [W/(m².K)]
Ambiance intérieure avec flux horizontal	20	7,7
Ambiance intérieure avec flux vertical ascendant	20	10,0
Ambiance intérieure avec flux vertical descendant	20	5,9
Ambiance extérieur	0	25,0

Les valeurs suivantes sont validées avec les limites suivantes :

- Mur en béton ou maçonnerie d'épaisseur ≥ 16 □□
- Isolation du mur d'épaisseur ≤ 200 □□
- Pour les liaisons Mur-Plancher haut L_{10} , la résistance thermique de l'isolant de toiture ≥ 5 \square^2 . \square/\square
- Les Ψ des mêmes modèles avec des hauteurs de plancher intermédiaires peuvent être calculés par interpolation linéaire.

Remarque 1: que ce soit pour les cas en ITE ou ITR, les valeurs PSI des modèles de rupteurs C, HP, H, ES(EQ), B et W n'ont pas été calculés. Pour le calcul de ces valeurs, la Société SCHÖCK met à disposition son bureau d'ingénierie interne.

Remarque 2: les calculs de ponts thermiques ne sont valables que pour des rupteurs de hauteurs jusqu'à 30 cm. Pour le calcul de ponts thermiques des rupteurs entre 30 à 50 cm, la Société SCHÖCK met à disposition son bureau d'ingénierie interne.

Remarque 3: A l'exception de ces cas mentionnés aux remarques 1 et 2, l'ensemble des valeurs de ponts thermiques de liaisons intégrant les modèles de rupteurs des gammes ISOKORB® T et ISOKORB® XT revendiquées par SCHÖCK BAUTEILE GmbH ont été validées par le CSTB.

4.2 Isolation Thermique Extérieure ITE

<u>Légende:</u>

L9 : Ponts thermiques des planchers intermédiaires

L10: Ponts thermique en toiture (dalle haute)

H: Hauteur du rupteur en (mm)

B: largeur du rupteur (acrotère) en (mm)

e: distance entre deux rupteurs en (mm), complété avec des modèles Z

 ψ_i : Pont thermique en [W/(m.K)]

4.2.1. Isokorb T avec plaques coupe-feu REI120

		Ψ_l [W/(m.K)]					
REI120	Modèle (ancienne dénomination)	K10 - V6	K20 - V6	K25 - V6	K35 - V6	K45 - V6	
	Modèle (nouvelle dénomination)	Typ K - M1 - V1	Typ K - M2 - V1	Typ K - M3 - V1	Typ K - M4 - V1	Typ K - M5 - V1	
	H160	0,15	0,18	0,19	0,20	0,22	
	H180	0,16	0,19	0,20	0,21	0,23	
L9	H200	0,17	0,19	0,21	0,22	0,24	
L9	H220	0,17	0,20	0,22	0,23	0,25	
	H250	0,19	0,22	0,23	0,24	0,26	
	H300	0,20	0,23	0,25	0,26	0,28	
	H160	0,17	0,19	0,21	0,22	0,23	
	H180	0,18	0,20	0,21	0,22	0,24	
1.40	H200	0,19	0,21	0,22	0,23	0,25	
L10	H220	0,19	0,22	0,23	0,24	0,25	
	H250	0,20	0,23	0,24	0,25	0,26	
	H300	0,22	0,24	0.25	0,26	0.28	

		Ψ_{l} [W/(m.K)]						
REI120	Modèle (ancienne dénomination)	K47 - V6	K55 - V8	K65 - V8	K75 - V8	K90 - V8		
	Modèle (nouvelle dénomination)	Typ K - M6 - V1	Typ K - M7 - V1	Typ K - M8 - V1	Typ K - M9 - V1	Typ K - M10 - V1		
	H160	0,23	0,28	0,29	0,32	0,35		
	H180	0,24	0,29	0,30	0,33	0,36		
L9	H200	0,25	0,29	0,31	0,34	0,37		
L9	H220	0,26	0,30	0,32	0,35	0,38		
	H250	0,27	0,32	0,33	0,37	0,39		
	H300	0,29	0,33	0,35	0,38	0,41		
	H160	0,24	0,28	0,29	0,31	0,33		
	H180	0,25	0,29	0,30	0,32	0,34		
1.40	H200	0,26	0,29	0,30	0,33	0,35		
L10	H220	0,26	0,30	0,31	0,34	0,35		
	H250	0,27	0,31	0,32	0,35	0,36		
	H300	0,29	0,32	0,34	0,36	0,38		

		Ψ _i [W/(m.K)]				
REI120	Modèle (ancienne dénomination)	K100	K110 - V10	K150 - V10		
	Modèle (nouvelle dénomination)	Typ K - M11 - V1	Typ K - M12 - V1	Typ K - M13 - V1		
	H160	0,35	-	-		
	H180	0,36	0,42	0,44		
	H200	0,37	0,43	0,45		
L9	H220	0,38	0,44	0,47		
	H250	0,40	0,45	0,48		
	H300	0,41	0,47	0,50		
	H160	0,33	-	-		
	H180	0,34	0,39	0,43		
L10	H200	0,35	0,40	0,44		
L10	H220	0,36	0,41	0,45		
	H250	0,37	0,42	0,46		
	H300	0,38	0,43	0,47		

REI120			Ψ_i [W/(m.K)]					
KEIIZO	Modèle (nouvelle dénomination)	Typ K-U - M1 - V1	Typ K-U - M2 - V1	Typ K-U - M3 - V1	Typ K-U - M4 - V1			
	H160	0,21	0,25	0,29	0,32			
	H180	0,22	0,26	0,30	0,32			
L9	H200	0,23	0,26	0,31	0,33			
L9	H220	0,23	0,27	0,32	0,34			
	H250	0,24	0,28	0,32	0,35			
	H300	-	-	-	-			
	H160	0,25	0,28	0,33	0,35			
	H180	0,26	0,29	0,34	0,36			
L10	H200	0,27	0,30	0,35	0,37			
LIU	H220	0,28	0,31	0,35	0,38			
	H250	0,29	0,32	0,37	0,39			
	H300	-	-	-	-			

REI120		Ψ_i [W/(m.K)]					
KEIIZO	Modèle (nouvelle dénomination)	Typ K-O - M1 - V1	Typ K-O - M2 - V1	Typ K-O - M3 - V1	Typ K-O - M4 - V1		
	H160	0,20	0,24	0,27	0,32		
	H180	0,21	0,25	0,27	0,32		
L9	H200	0,22	0,25	0,28	0,33		
	H220	0,22	0,26	0,29	0,34		
	H250	0,23	0,27	0,30	0,35		
	H160	0,24	0,27	0,30	0,35		
	H180	0,25	0,28	0,31	0,36		
L10	H200	0,26	0,29	0,31	0,37		
	H220	0,27	0,30	0,32	0,38		
	H250	0,28	0,31	0,34	0,39		

·		Ψ_{i} [W/(m.K)]						
REI120	Modèle (ancienne dénomination)	Q10	Q20	Q30	Q40	Q50		
	Modèle (nouvelle dénomination)	Typ Q - V1	Typ Q - V2	Typ Q - V3	Typ Q - V4	Typ Q - V5		
	H160	0,16	0,16	0,16	0,17	0,17		
	H180	0,17	0,17	0,18	0,18	0,19		
L9	H200	0,18	0,18	0,18	0,19	0,19		
L9	H220	0,19	0,19	0,20	0,20	0,20		
	H250	0,20	0,20	0,21	0,21	0,22		
	H300	0,21	0,22	0,22	0,23	0,23		
	H160	0,18	0,18	0,18	0,19	0,19		
	H180	0,19	0,19	0,19	0,20	0,20		
1.40	H200	0,20	0,20	0,20	0,21	0,21		
L10	H220	0,20	0,21	0,21	0,21	0,22		
	H250	0,21	0,22	0,22	0,22	0,23		
	H300	0,23	0,23	0,23	0,24	0,24		

		Ψ_i [W/(m.K)]					
REI120	Modèle (ancienne dénomination)	Q70	Q80	Q90	Q100	Q110	
	Modèle (nouvelle dénomination)	Typ Q - V6	Typ Q - V7	Typ Q - V8	Typ Q - V9	Typ Q - V10	
	H160	-	-	-	-	-	
	H180	0,19	0,20	0,20	-	-	
L9	H200	0,20	0,20	0,21	0,23	0,24	
La	H220	0,20	0,22	0,22	0,24	0,25	
	H250	0,22	0,23	0,24	0,25	0,26	
	H300	0,24	0,25	0,25	0,27	0,28	
	H160	-	-	-	-	-	
	H180	0,20	0,21	0,22	-	-	
1.40	H200	0,21	0,22	0,22	0,24	0,24	
L10	H220	0,22	0,23	0,23	0,25	0,25	
	H250	0,23	0,24	0,24	0,26	0,26	
	H300	0,24	0,25	0,26	0,27	0,28	

		Ψ_i [W/(m.K)]						
REI120	MOdèle (ancienne dénomination)	Q10+Q10	Q20+Q20	Q30+Q30	Q40+Q40	Q60+Q60		
	Modèle (nouvelle dénomination)	Typ Q - VV1	Typ Q - VV2	Typ Q - VV3	Typ Q - VV4	Typ Q - VV5		
	H160	0,17	0,17	0,18	0,19	0,20		
Plancher	H180	0,18	0,19	0,19	0,20	0,21		
intermédiaire	H200	0,19	0,19	0,20	0,21	0,22		
(L9)	H220	0,20	0,20	0,21	0,22	0,23		
(L9)	H250	0,21	0,22	0,22	0,23	0,24		
	H300	0,23	0,23	0,24	0,25	0,26		
	H160	0,19	0,19	0,20	0,20	0,21		
	H180	0,20	0,20	0,21	0,22	0,22		
Plancher haut	H200	0,20	0,21	0,21	0,22	0,23		
(L10)	H220	0,21	0,22	0,22	0,23	0,24		
	H250	0,22	0,23	0,23	0,24	0,25		
	H300	0,24	0,24	0,25	0,26	0,26		

		Ψ_i [W/(m.K)]					
REI120	Modèle (ancienne dénomination)	Q70+Q70	Q80+Q80	Q90+90	Q100+Q100	Q110+Q110	
	Modèle (nouvelle dénomination)	Typ Q - VV6	Typ Q - VV7	Typ Q - VV8	Typ Q - VV9	Typ Q - VV10	
	H160	-	-	-	-	-	
Plancher	H180	0,22	0,23	0,24	-	-	
intermédiaire	H200	0,22	0,24	0,25	0,28	0,29	
(L9)	H220	0,23	0,25	0,26	0,29	0,30	
(L9)	H250	0,25	0,26	0,28	0,30	0,31	
	H300	0,26	0,28	0,29	0,32	0,33	
	H160	-		-	-	-	
	H180	0,23	0,24	0,25	-	-	
Plancher haut	H200	0,24	0,25	0,26	0,28	0,29	
(L10)	H220	0,24	0,26	0,27	0,29	0,30	
	H250	0,25	0,27	0,28	0,30	0,31	
	H300	0,27	0,28	0,29	0,31	0,32	

			Ψ _i [W/(m.K)]							
REI120	Modèle (anderne dénomination)	DFi 6/2	DFi 6/3	DFi 6/4	DFi 6/5	DFi 6/7	DFi 6/10			
	Modèle (nouvelle dénomination)	Typ QFi - V1	Typ QFi - V2	Typ QFi - V3	Typ QFi - V4	Typ QFi - V5	Typ QFi - V6			
	H160	0,16	0,18	0,18	0,20	0,22	0,25			
Plancher	H180	0,17	0,19	0,19	0,21	0,23	0,25			
intermédiaire	H200	0,17	0,20	0,20	0,22	0,24	0,26			
(L9)	H220	0,19	0,22	0,21	0,23	0,25	0,27			
	H250	0,20	0,22	0,21	0,23	0,25	0,29			
	H160	0,17	0,19	0,19	0,21	0,23	0,26			
Plancher haut	H180	0,19	0,20	0,20	0,22	0,24	0,26			
(L10)	H200	0,19	0,20	0,20	0,22	0,25	0,27			
(L10)	H220	0,20	0,22	0,21	0,23	0,25	0,29			
	H250	0,21	0,23	0,23	0,25	0,27	0,29			

		Ψ _i [W/(m.K)]						
REI120	Modèle (ancienne denomination)	Q 6/2	Q 6/3	Q 6/4	Q 6/5	Q 6/7	Q 6/10	
	Modèle (nouveile dénomination)	Typ QF - V1	Typ QF - V2	Typ QF - V3	Typ QF - V4	Typ QF - V5	Typ QF - V6	
Plancher	H190-200	0,19	0,20	0,23	0,25	0,27	0,30	
intermédiaire	H230	0,20	0,22	0,24	0,26	0,28	0,31	
(L9)	H250	0,20	0,23	0,25	0,26	0,29	0,31	
Diancher haut	H190-200	0,19	0,22	0,24	0,25	0,27	0,30	
Plancher haut	H230	0,20	0,23	0,25	0,26	0,28	0,31	
(L10)	H250	0,21	0,23	0,25	0,26	0,29	0,31	

REI120			Ψ _ℓ [W/(m.K)]						
1000mm	Modèle (ancienne dénomination)	D20 - VV4	D30 - VV6	D50 - VV6	D70 - VV6	D90 - VV6			
1000111111	Modèle (nouvelle dénomination)	Typ D - MM1 - VV1	Typ D - MM2 - VV1	Typ D - MM3 - VV1	Typ D - MM4 - VV1	Typ D - MM5 - VV1			
	H160	0,22	0,24	0,28	0,32	0,35			
	H180	0,23	0,25	0,29	0,34	0,37			
L9	H200	0,23	0,26	0,30	0,35	0,38			
La	H220	0,24	0,27	0,31	0,36	0,39			
	H250	0,25	0,28	0,32	0,37	0,40			
	H280	0,27	0,29	0,33	0,38	0,41			
	H160	0,23	0,25	0,28	0,31	0,34			
	H180	0,24	0,26	0,29	0,32	0,35			
L10	H200	0,24	0,26	0,29	0,33	0,36			
LIU	H220	0,24	0,27	0,30	0,34	0,36			
	H250	0,25	0,28	0,31	0,35	0,37			
	H280	0,27	0,29	0,32	0,36	0,38			

REI120			Ψ_i [W/(m.K)]						
500mm	Modèle (nowete denomination)	Typ D - MM1 - VV1	Typ D - MM2 - VV1	Typ D - MM3 - VV1	Typ D - MM4 - VV1	Typ D - MM5 - VV1	Typ D - MM6 - VV1		
	H160	0,22	0,23	0,26	0,32	0,35	0,38		
	H180	0,23	0,24	0,28	0,34	0,37	0,40		
	H200	0,23	0,25	0,29	0,35	0,38	0,41		
L9	H220	0,24	0,26	0,30	0,36	0,39	0,42		
	H250	0,25	0,27	0,31	0,37	0,40	0,43		
	H280	0,27	0,28	0,32	0,38	0,41	0,44		
	H160	0,23	0,26	0,29	0,31	0,34	0,36		
	H180	0,24	0,27	0,30	0,32	0,35	0,38		
140	H200	0,24	0,27	0,30	0,33	0,35	0,39		
L10	H220	0,24	0,29	0,31	0,34	0,36	0,39		
	H250	0,25	0,30	0,32	0,35	0,38	0,40		
	H280	0,27	0,30	0,34	0,36	0,39	0,41		

REI120		Ψ_t [W/(m.K)]		
KLIIZU	Modèle (nouvelle dénomination)	Typ Z - Batiboard	Typ Z - Aestuver	
	H160	0,10	0,12	
	H180	0,11	0,12	
L9	H200	0,12	0,13	
	H220	0,12	0,14	
	H250	0,13	0,15	
	H160	0,13	0,14	
	H180	0,13	0,15	
L10	H200	0,14	0,15	
	H220	0,15	0,16	
	H250	0,16	0,17	

		Ψ ₁ [W/(m.K)] Typ A - L250 - X80		
REI120	Modèle (nouvelle dénomination)			
	NAME OF THE PROPERTY OF THE PR	MM1-VV1	MM2-VV1	
	e = 0,25m	0,26	0,29	
	e = 0,5m	0,21	0,22	
B160	e = 1,0m	0,18	0,19	
	e = 1,5m	0,18	0,18	
	e = 2,0m	0,17	0,17	
	e = 0,25m	0,27	0,30	
	e = 0,5m	0,22	0,23	
B180	e = 1,0m	0,19	0,20	
	e = 1,5m	0,18	0,19	
	e = 2,0m	0,18	0,18	
	e = 0,25m	0,28	0,30	
	e = 0,5m	0,22	0,24	
B200	e = 1,0m	0,20	0,20	
	e = 1,5m	0,19	0,19	
	e = 2,0m	0,18	0,19	
	e = 0,25m	0,29	0,31	
	e = 0,5m	0,23	0,25	
B220	e = 1,0m	0,20	0,21	
	e = 1,5m	0,19	0,20	
	e = 2,0m	0,19	0,19	
	e = 0,25m	0,30	0,32	
	e = 0,5m	0,24	0,25	
B250	e = 1,0m	0,21	0,22	
	e = 1,5m	0,20	0,21	
	e = 2,0m	0,20	0,20	

		Ψ_i [W/(m.K)]
REI120	Modèle (nouvelle dénomination)	Typ F - L250 - X80
		MM1-VV1
	e = 0,25m	0,27
	e = 0,5m	0,21
B160	e = 1,0m	0,18
	e = 1,5m	0,17
	e = 2,0m	0,16
	e = 0,25m	0,28
	e = 0,5m	0,22
B180	e = 1,0m	0,19
	e = 1,5m	0,17
	e = 2,0m	0,17
	e = 0,25m	0,29
	e = 0,5m	0,22
B200	e = 1,0m	0,19
	e = 1,5m	0,18
	e = 2,0m	0,18
	e = 0,25m	0,30
	e = 0,5m	0,23
B220	e = 1,0m	0,20
	e = 1,5m	0,19
	e = 2,0m	0,18
	e = 0,25m	0,31
	e = 0,5m	0,24
B250	e = 1,0m	0,21
	e = 1,5m	0,20
	e = 2,0m	0,19

BEHOO		Ψ_i [W/(m.K)]
REI120	Modèle (nouvelle dénomination)	Typ O - L250 - X80
	e = 0,25m	0,29
	e = 0,5m	0,21
B180	e = 1,0m	0,17
	e = 1,5m	0,15
	e = 2,0m	0,15
	e = 0,25m	0,30
	e = 0,5m	0,22
B200	e = 1,0m	0,17
	e = 1,5m	0,16
	e = 2,0m	0,15
	e = 0,25m	0,31
	e = 0,5m	0,23
B220	e = 1,0m	0,18
	e = 1,5m	0,17
	e = 2,0m	0,16
	e = 0,25m	0,33
	e = 0,5m	0,24
B250	e = 1,0m	0,19
	e = 1,5m	0,18
	e = 2,0m	0,17

4.2.2. Isokorb T sans plaques coupe-feu R0 (Minoration $\Delta\Psi$ à appliquer au valeur R120)

		$\Delta \Psi_i$ [W/(m.K)]						
R0	Modèle (ancienne dénomination)	K10 - V6	K20 - V6	K25 - V6	K35 - V6	K45 - V6		
	Modèle (nouvelle dénomination)	Typ K - M1 - V1	Typ K - M2 - V1	Typ K - M3 - V1	Typ K - M4 - V1	Typ K - M5 - V1		
L9	Toute épaisseur	-0,02	-0,02	-0,02	-0,02	-0,02		
L10	Toute épaisseur	-0,02	-0,02	-0,02	-0,01	-0,01		

$\Delta \Psi_i [W/(m.K)]$						
R0	Modèle (ancienne dénomination)	K47 - V6	K55 - V8	K65 - V8	K75 - V8	K90 - V8
	Modèle (nouvelle dénomination)	Typ K - M6 - V1	Typ K - M7 - V1	Typ K - M8 - V1	Typ K - M9 - V1	Typ K - M10 - V1
L9	Toute épaisseur	-0,02	-0,02	-0,02	-0,01	-0,01
L10	Toute épaisseur	-0,01	-0,01	-0,01	-0,01	-0,01

		$\Delta \Psi_i$ [W/(m.K)]		
R0	Modèle (ancienne dénomination)	K100	K110 - V10	K150 - V10
	Modèle (nouvelle dénomination)	Typ K - M11 - V1	Typ K - M12 - V1	Typ K - M13 - V1
L9	Toute épaisseur	-0,01	-0,03	-0,01
L10	Toute épaisseur	-0,01	-0,02	-0,02

R0					
	Modèle (nouvelle dénomination)	Typ K-U - M1 - V1	Typ K-U - M2 - V1	Typ K-U - M3 - V1	Typ K-U - M4 - V1
L9	Toute épaisseur	-0,02	-0,02	-0,01	-0,01
L10	Toute épaisseur	-0,02	-0,02	-0,01	-0,01

		$\Delta \Psi_i [W/(m.K)]$					
R0	Modèle (ancienne dénomination)	Q10	Q20	Q30	Q40	Q50	
	Modèle (nouvelle dénomination)	Typ Q - V1	Typ Q - V2	Typ Q - V3	Typ Q - V4	Typ Q - V5	
L9	Toute épaisseur	-0,04	-0,04	-0,04	-0,04	-0,04	
L10	Toute épaisseur	-0,04	-0,04	-0,04	-0,04	-0,04	

		$\Delta \Psi_i$ [W/(m.K)]					
R0	Modèle (ancienne dénomination)	Q70	Q80	Q90	Q100	Q110	
	Modèle (nouvelle dénomination)	Typ Q - V6	Typ Q - V7	Typ Q - V8	Typ Q - V9	Typ Q - V10	
L9	Toute épaisseur	-0,04	-0,04	-0,04	-0,04	-0,04	
L10	Toute épaisseur	-0,03	-0,03	-0,03	-0,03	-0,03	

$\Delta \mathbf{\Psi}_{i}$ [W/(m.K)]						
R0	Modèle (ancienne dénomination)	Q10+Q10	Q20+Q20	Q30+Q30	Q40+Q40	Q60+Q60
	Modèle (nouvelle dénomination)	Typ Q - VV1	Typ Q - VV2	Typ Q - VV3	Typ Q - VV4	Typ Q - VV5
L9	Toute épaisseur	-0,04	-0,04	-0,04	-0,04	-0,04
L10	Toute épaisseur	-0,03	-0,03	-0,03	-0,03	-0,03

		$\Delta \mathbf{\Psi}_{i}$ [W/(m.K)]					
R0	Modèle (ancienne dénomination)	Q70+Q70	Q80+Q80	Q90+90	Q100+Q100	Q110+Q110	
	Modèle (nouvelle dénomination)	Typ Q - VV6	Typ Q - VV7	Typ Q - VV8	Typ Q - VV9	Typ Q - VV10	
L9	Toute épaisseur	-0,04	-0,04	-0,04	-0,04	-0,04	
L10	Toute épaisseur	-0,03	-0,03	-0,03	-0,03	-0,03	

Remarque pour les autres modèles T sans plaques coupe-feu R0 : les valeurs REI120 sont plus défavorables et elles pourraient être utilisées.

4.2.3. Isokorb XT avec plaques coupe-feu REI120

				Ψ_{ℓ} [W/(m.K)]		
REI120	Modèle (ancienne dénomination)	K10 - V6	K20 - V6	K25 - V6	K35 - V6	K45 - V6
	Modèle (nouvelle dénomination)	Typ K - M1 - V1	Typ K - M2 - V1	Typ K - M3 - V1	Typ K - M4 - V1	Typ K - M5 - V1
	H160	0,11	0,13	0,14	0,15	0,16
	H180	0,11	0,13	0,15	0,16	0,17
L9	H200	0,12	0,14	0,15	0,16	0,17
La	H220	0,13	0,15	0,16	0,17	0,18
	H250	0,13	0,15	0,17	0,18	0,19
	H300	0,14	0,16	0,17	0,19	0,20
	H160	0,14	0,16	0,17	0,18	0,19
	H180	0,14	0,16	0,17	0,18	0,19
L10	H200	0,15	0,17	0,18	0,19	0,20
L10	H220	0,15	0,17	0,18	0,19	0,20
	H250	0,16	0,18	0,19	0,20	0,21
	H300	0,17	0,19	0,20	0,21	0,22

		Ψ_{t} [W/(m.K)]						
REI120	Modèle (ancienne dénomination)	K47 - V6	K55 - V8	K65 - V8	K75 - V8	K90 - V8		
	Modèle (nouvelle dénomination)	Typ K - M6 - V1	Typ K - M7 - V1	Typ K - M8 - V1	Typ K - M9 - V1	Typ K - M10 - V1		
	H160	0,17	0,21	0,22	0,28	0,28		
	H180	0,18	0,22	0,23	0,28	0,29		
L9	H200	0,18	0,22	0,24	0,29	0,30		
L9	H220	0,19	0,23	0,24	0,30	0,30		
	H250	0,20	0,24	0,25	0,30	0,31		
	H300	0,21	0,25	0,26	0,31	0,32		
	H160	0,20	0,23	0,24	0,28	0,29		
	H180	0,20	0,23	0,25	0,29	0,29		
L10	H200	0,21	0,24	0,25	0,29	0,30		
L10	H220	0,21	0,24	0,26	0,30	0,30		
	H250	0,22	0,25	0,26	0,31	0,31		
	H300	0,22	0,26	0,27	0,31	0,32		

REI120			Ψ_i [W/(m.K)]	
TELLE	Modèle (nouvelle dénomination)	Typ K - M11 - V1	Typ K - M12 - V1	Typ K - M13 - V1
	H180	0,34	0,38	0,41
	H190	0,34	0,38	0,41
	H200	0,34	0,38	0,42
	H210	0,35	0,39	0,42
	H220	0,35	0,39	0,42
	H230	0,35	0,39	0,43
L9	H240	0,36	0,40	0,43
	H250	0,36	0,40	0,43
	H260	0,36	0,40	0,44
	H270	0,36	0,41	0,44
	H280	0,37	0,41	0,44
	H290	0,37	0,41	0,45
	H300	0,37	0,41	0,45

REI120			Ψ_i [W/(m.K)]	
KLIIZO	Modèle (nouvelle dénomination)	Typ K - M11 - V1	Typ K - M12 - V1	Typ K - M13 - V1
	H180	0,33	0,37	0,39
	H190	0,33	0,37	0,40
	H200	0,34	0,37	0,40
	H210	0,34	0,37	0,40
	H220	0,34	0,38	0,40
	H230	0,34	0,38	0,41
L10	H240	0,35	0,38	0,41
	H250	0,35	0,38	0,41
	H260	0,35	0,39	0,41
	H270	0,35	0,39	0,42
	H280	0,35	0,39	0,42
	H290	0,36	0,39	0,42
	H300	0,36	0,39	0,42

REI120			Ψ_i [W/(n	n.K)]	
KEIIZO	Modèle (nouvelle dénomination)	Typ K-U - M1 - V1	Typ K-U - M2 - V1	Typ K-U - M3 - V1	Typ K-U - M4 - V1
	H160	0,16	0,19	0,22	0,25
L9	H180	0,16	0,20	0,23	0,26
	H200	0,17	0,20	0,24	0,26
La	H220	0,17	0,21	0,24	0,27
	H250	0,18	0,22	0,25	0,28
	H300	-	-	-	-
	H160	0,18	0,21	0,24	0,26
	H180	0,19	0,22	0,25	0,27
L10	H200	0,19	0,22	0,25	0,27
Liu	H220	0,20	0,23	0,26	0,28
	H250	0,20	0,23	0,26	0,28
	H300	-	-	-	-

REI120		Ψ_i [W/(m.K)]							
KEIIZO	Modèle (nouvelle dénomination)	Typ K-O - M1 - V1	Typ K-O - M2 - V1	Typ K-O - M3 - V1	Typ K-O - M4 - V1				
	H160	0,15	0,19	0,21	0,25				
	H180	0,16	0,20	0,22	0,26				
L9	H200	0,16	0,20	0,22	0,26				
	H220	0,17	0,21	0,23	0,27				
	H250	0,18	0,22	0,24	0,28				
	H160	0,18	0,21	0,23	0,26				
	H180	0,18	0,22	0,23	0,27				
L10	H200	0,19	0,22	0,24	0,27				
	H220	0,19	0,23	0,24	0,28				
	H250	0,20	0,23	0,25	0,28				

			ч	(W/(m.K))		
REI120	Modèle (ancienne dénomination)	Q10	Q20	Q30	Q40	Q50
	Modèle (nouvelle dénomination)	Typ Q - V1	Typ Q - V2	Typ Q - V3	Typ Q - V4	Typ Q - V5
	H160	0,12	0,12	0,12	0,13	-
	H180	0,12	0,12	0,13	0,13	0,14
L9	H200	0,13	0,13	0,13	0,14	0,14
La	H220	0,13	0,13	0,14	0,14	0,15
	H250	0,14	0,14	0,15	0,15	0,15
	H300	0,15	0,15	0,16	0,16	0,16
	H160	0,14	0,14	0,14	0,15	-
	H180	0,14	0,14	0,15	0,15	0,16
L10	H200	0,15	0,15	0,15	0,16	0,16
LIU	H220	0,15	0,15	0,16	0,16	0,17
	H250	0,16	0,16	0,17	0,17	0,17
	H300	0,17	0,17	0,18	0,18	0,18

			Ψ_i [W/(m.K)]	
REI120	Modèle (ancienne dénomination)	Q70	Q80	Q90
	Modèle (nouvelle dénomination)	Typ Q - V6	Typ Q - V7	Typ Q - V8
	H160	-	-	-
	H180	0,14	0,15	0,16
L9	H200	0,14	0,15	0,16
La	H220	0,15	0,16	0,17
	H250	0,16	0,17	0,18
	H300	0,17	0,18	0,19
	H160	-	-	-
	H180	0,16	0,17	0,18
L10	H200	0,16	0,17	0,19
L10	H220	0,17	0,18	0,19
	H250	0,18	0,19	0,20
	H300	0,19	0,20	0,20

			Ψ_i [W/(m.K)]			
REI120	Modèle (ancienne dénomination)	Q10+Q10	Q20+Q20	Q30+Q30	Q40+Q40	Q60+Q60
	Modèle (nouvelle dénomination)	Typ Q - VV1	Typ Q - VV2	Typ Q - VV3	Typ Q - VV4	Typ Q - VV5
	H160	0,13	0,13	0,14	0,15	-
Plancher	H180	0,13	0,14	0,14	0,15	0,16
intermédiaire	H200	0,14	0,14	0,15	0,16	0,17
(L9)	H220	0,14	0,15	0,16	0,16	0,17
(LS)	H250	0,15	0,15	0,16	0,17	0,18
	H300	0,16	0,16	0,17	0,18	0,19
	H160	0,15	0,15	0,16	0,17	-
	H180	0,15	0,16	0,16	0,17	0,18
Plancher haut	H200	0,16	0,16	0,17	0,18	0,19
(L10)	H220	0,16	0,17	0,18	0,18	0,19
	H250	0,17	0,17	0,18	0,19	0,20
	H300	0,18	0,18	0,19	0,20	0,21

		Ψ_{l} [W/(m.K)]			
REI120	Modèle (ancierne dénomination)	Q70+Q70	Q80+Q80	Q90+90	
	Modèle (nouvete dénomination)	Typ Q - VV6	Typ Q - VV7	Typ Q - VV8	
	H160			-	
Diancher	H180	0,17	0,18	0,20	
Plancher intermédiaire	H200	0,17	0,19	0,20	
	H220	0,18	0,19	0,21	
(L9)	H250	0,19	0,20	0,22	
	H300	0,20	0,21	0,22	
	H160				
	H180	0,19	0,20	0,21	
Plancher haut	H200	0,19	0,21	0,21	
(L10)	H220	0,20	0,21	0,22	
	H250	0,21	0,22	0,23	
	H300	0,21	0,22	0,23	

REI120		Ψ _ℓ [W/(m.K)]				
1000mm	Modèle (ancienne denomination)	D20 - VV4	D30 - VV6	D50 - VV6	D70 - VV6	D90 - VV6
100011111	Modèle (nouvelle dénomination)	Typ D - MM1 - VV1	Typ D - MM2 - VV1	Typ D - MM3 - VV1	Typ D - MM4 - VV1	Typ D - MM5 - VV1
	H160	0,15	0,17	0,20	0,24	0,27
	H180	0,16	0,18	0,21	0,25	0,28
L9	H200	0,17	0,19	0,22	0,26	0,29
La	H220	0,18	0,20	0,23	0,27	0,30
	H250	0,19	0,21	0,24	0,28	0,31
	H280	0,19	0,21	0,24	0,29	0,31
	H160	0,18	0,20	0,22	0,25	0,28
	H180	0,18	0,20	0,23	0,26	0,29
140	H200	0,19	0,21	0,24	0,26	0,29
L10	H220	0,20	0,22	0,24	0,27	0,30
	H250	0,21	0,22	0,25	0,28	0,31
	H280	0,21	0,23	0,25	0,29	0,31

REH20							
500mm	Modèle (nouvelle dénomination)	Typ D - MM1 - VV1	Typ D - MM2 - VV1	Typ D - MM3 - VV1	Typ D - MM4 - VV1	Typ D - MM5 - VV1	Typ D - MM6 - VV1
	H160	0,15	0,18	0,21	0,24	0,27	0,30
	H180	0,16	0,19	0,22	0,25	0,28	0,31
L9	H200	0,17	0,21	0,23	0,26	0,29	0,32
La	H220	0,18	0,21	0,24	0,27	0,30	0,33
	H250	0,19	0,22	0,25	0,28	0,31	0,34
	H280	0,19	0,23	0,26	0,29	0,31	0,34
	H160	0,18	0,20	0,23	0,25	0,28	0,30
	H180	0,18	0,21	0,24	0,28	0,29	0,31
1.40	H200	0,19	0,22	0,24	0,26	0,29	0,32
L10	H220	0,20	0,23	0,25	0,27	0,30	0,32
	H250	0,21	0,24	0,26	0,28	0,31	0,33
	H280	0,21	0,24	0,26	0,29	0,31	0,33

REI120		Ψ_{i} [W/(m.K)]		
KEIIZO	Modèle (nouvelle dénomination)	Typ Z - Batiboard	Typ Z - Aestuver	
	H160	0,07	0,08	
	H180	0,07	0,08	
L9	H200	0,08	0,09	
	H220	0,08	0,09	
	H250	0,09	0,10	
	H160	0,10	0,11	
	H180	0,11	0,12	
L10	H200	0,11	0,12	
	H220	0,12	0,12	
	H250	0,12	0,13	

		Ψ_i [W/(r	n.K)]	
REI120	Modèle (nouvelle dénomination)	Typ A - L250 - X120		
	modelo podrete della madeny	MM1-VV1	MM2-VV1	
	nur XT Typ A (25 cm tief)	0,21	0,24	
	e = 0,5m	0,17	0,18	
B160	e = 1,0m	0,15	0,16	
	e = 1,5m	0,14	0,15	
	e = 2,0m	0,14	0,14	
	nur XT Typ A (25 cm tief)	0,22	0,24	
	e = 0,5m	0,18	0,19	
B180	e = 1,0m	0,16	0,16	
	e = 1,5m	0,15	0,15	
	e = 2,0m	0,14	0,15	
	nur XT Typ A (25 cm tief)	0,23	0,25	
	e = 0,5m	0,18	0,19	
B200	e = 1,0m	0,16	0,17	
	e = 1,5m	0,15	0,16	
	e = 2,0m	0,15	0,15	
	nur XT Typ A (25 cm tief)	0,23	0,26	
	e = 0,5m	0,19	0,20	
B220	e = 1,0m	0,16	0,17	
	e = 1,5m	0,16	0,16	
	e = 2,0m	0,15	0,16	
	nur XT Typ A (25 cm tief)	0,24	0,26	
	e = 0,5m	0,19	0,21	
B250	e = 1,0m	0,17	0,18	
	e = 1,5m	0,16	0,17	
	e = 2,0m	0,16	0,16	
	nur XT Typ A (25 cm tief)	0,25	0,27	
	e = 0,5m	0,20	0,22	
B300	e = 1,0m	0,18	0,19	
	e = 1,5m	0,17	0,18	
	e = 2,0m	0,17	0,17	

		Ψ_i [W/(m.K)]
REI120	Modèle (nouvelle dénomination)	Typ F - L250 - X120
		MM1-VV1
	nur XT Typ F (25 cm tief)	0,21
	e = 0,5m	0,16
B160	e = 1,0m	0,14
B 100	e = 1,5m	0,13
	e = 2,0m	0,13
	nur XT Typ F (25 cm tief)	0,22
	e = 0,5m	0,17
B180	e = 1,0m	0,14
	e = 1,5m	0,14
	e = 2,0m	0,13
	nur XT Typ F (25 cm tief)	0,23
	e = 0,5m	0,18
B200	e = 1,0m	0,15
	e = 1,5m	0,14
	e = 2,0m	0,14
	nur XT Typ F (25 cm tief)	0,24
	e = 0,5m	0,18
B220	e = 1,0m	0,15
	e = 1,5m	0,15
	e = 2,0m	0,14
	nur XT Typ F (25 cm tief)	0,25
	e = 0,5m	0,19
B250	e = 1,0m	0,16
	e = 1,5m	0,15
	e = 2,0m	0,15
	nur XT Typ F (25 cm tief)	0,26
	e = 0,5m	0,20
B300	e = 1,0m	0,17
	e = 1,5m	0,16
	e = 2,0m	0,16

REI120		Ψ_i [W/(m.K)]
REI120	Modèle (nouvelle dénomination)	Typ O - L250 - X120
	nur XT Typ O (25 cm tief)	0,21
	e = 0,5m	0,14
B180	e = 1,0m	0,11
	e = 1,5m	0,10
	e = 2,0m	0,10
	nur XT Typ O (25 cm tief)	0,22
	e = 0,5m	0,15
B200	e = 1,0m	0,12
	e = 1,5m	0,11
	e = 2,0m	0,10
	nur XT Typ O (25 cm tief)	0,23
	e = 0,5m	0,16
B220	e = 1,0m	0,13
	e = 1,5m	0,12
	e = 2,0m	0,11
	nur XT Typ O (25 cm tief)	0,24
	e = 0,5m	0,17
B250	e = 1,0m	0,13
	e = 1,5m	0,12
	e = 2,0m	0,12
	nur XT Typ O (25 cm tief)	0,25
	e = 0,5m	0,18
B300	e = 1,0m	0,15
	e = 1,5m	0,13
	e = 2,0m	0,13

4.2.4. Isokorb XT sans plaques coupe-feu R0

			$\Delta \Psi_i$ [W/(m.K)]				
R0	Modèle (ancienne dénomination)	K10 - V6	K20 - V6	K25 - V6	K35 - V6	K45 - V6	
	Modèle (nouvelle dénomination)	Typ K - M1 - V1	Typ K - M2 - V1	Typ K - M3 - V1	Typ K - M4 - V1	Typ K - M5 - V1	
L9	Toute épaisseur	-0,02	-0,02	-0,02	-0,02	-0,01	
L10	Toute épaisseur	-0,01	-0,01	-0,01	-0,01	-0,01	

		$\Delta \Psi_i$ [W/(m.K)]				
R0	Modèle (ancienne dénomination)	K47 - V6	K55 - V8	K65 - V8	K75 - V8	K90 - V8
	Modèle (nouvelle dénomination)	Typ K - M6 - V1	Typ K - M7 - V1	Typ K - M8 - V1	Typ K - M9 - V1	Typ K - M10 - V1
L9	Toute épaisseur	-0,01	-0,01	-0,01	-0,01	-0,01
L10	Toute épaisseur	-0,01	-0,01	-0,01	-0,01	-0,01

Remarque pour les autres modèles XT sans plaques coupe-feu R0 : les valeurs REI120 sont plus défavorables et elles pourraient être utilisées.

4.3 Isolation Thermique Répartie ITR

En tenant compte des différents matériaux et épaisseurs possibles dans le cas d'une façade en Isolation Thermique Répartie (ITR), les valeurs ont été calculées par rapport aux valeurs de l'isolation extérieure.

Pour les rupteurs SCHÖCK ISOKORB® T, les valeurs PSI sont moins favorables pour les cas en ITR. Pour obtenir les valeurs PSI pour les rupteurs en ITR, les valeurs de l'Annexe 4.2 doivent être corrigées selon le tableau suivant (L9 ou L10) :

L9	Augmentation par rapport à la valeur ПЕ Чі [W/(m.K)]			
SCHÖCK ISOKORB® type T	Mur en ép=30cm	Mur en ép=36.5cm		
Béton cellulaire (lambda 0.11 W/mK)	+0.05	+0.06		
Maçonnerie type a (lambda 0.15 W/mK)	+0.07	+0.08		
Maçonnerie type b (lambda 0.30 W/mK)	+0.13	+0.14		

L9	Augmentation par rappor	rtà la valeur ПЕ Ѱі [W/(m.K)]
SCHÖCK ISOKORB® type XT	Mur en ép=30cm	Mur en ép=36.5cm
Béton cellulaire (lambda 0.11 W/mK)	+0.04	+0.05
Maçonnerie type a (lambda 0.15 W/mK)	+0.06	+0.07
Maçonnerie type b (lambda 0.30 W/mK)	+0.09	+0.11

L10	Augmentation par rapport à la valeur ПЕ Чі [W/(m.K)]					
SCHÖCK ISOKORB® type T	Mur en ép=30cm	Mur en ép=36.5cm				
Béton cellulaire (lambda 0.11 W/mK)	+0.02	+0.03				
Maçonnerie type a (lambda 0.15 W/mK)	+0.03	+0.04				
Maçonnerie type b (lambda 0.30 W/mK)	+0.05	+0.06				

L10	Augmentation par rappor	tà la valeur ITE Чі [W/(m.K)]
SCHÖCK ISOKORB® type XT	Mur en ép=30cm	Mur en ép=36.5cm
Béton cellulaire (lambda 0.11 W/mK)	+0.01	+0.02
Maçonnerie type a (lambda 0.15 W/mK)	+0.02	+0.03
Maçonnerie type b (lambda 0.30 W/mK)	+0.04	+0.05

ANNEXE 5 : Bruit d'impact – Valeur de réduction ΔLw (ETE 17/0261 annexe C.4)

L'affaiblissement pondéré du niveau de bruit de choc Δ Lw sert de valeur d'entrée pour le pronostic calculé de la protection contre les bruits d'impact dans le bâtiment selon EN ISO 12354-2. Les valeurs pour Δ Lw selon le tableau ci-dessous (ETE 17/0261, tableau C.18 à tableau C.32) sont valables aussi bien pour une exécution avec ou sans plaques coupe-feu.

1. SCHÖCK ISOKORB® GAMME T – valeurs d'amélioration ΔLw (selon ETE 17/0261)

Schöck Isokorb® T Typ K

TT	ур К	M1	-V1	M1	- V 2	M2	-V1	M2	- V 2
ΔL _w [c	dB] bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	13,0	-	12,0	-	11,5	-	11,0	-
	180-190	14,0	14,0	13,0	13,0	12,5	12,5	12,0	12,0
H [mm]	200-210	14,0	14,0	13,0	13,0	12,5	12,5	12,0	12,0
	220-230	15,0	15,0	13,5	13,5	13,5	13,5	12,5	12,5
	240-250	15,5	15,5	14,0	14,0	14,0	14,0	13,0	13,0

П	ур К	M3-V1		M3-V2		M3-V3		M4-V1		M4-V2	
Δ۱ [dB] bei	CV35	CV50								
	160-170	10,4	-	10,5	-	9,5	-	10,1	-	10,0	-
	180-190	11,4	11,4	11,5	11,5	10,5	10,5	11,1	11,1	11,0	11,0
H [mm]	200-210	11,4	11,4	11,5	11,5	10,5	10,5	11,1	11,1	11,0	11,0
	220-230	12,4	12,4	12,0	12,0	11,0	11,0	12,1	12,1	11,5	11,5
	240-250	12,9	12,9	12,5	12,5	11,5	11,5	12,6	12,6	12,0	12,0

П	ур К	M4	-V3	M4-	VV1	M5	-V1	M5	-V2	M5	-V3	MS-	W1
Δ۱. [٥	dB) bei	CV35	CV50										
	160-170	9,0	-	7,1	-	9,7	-	9,0	-	8,0	-	6,7	-
	180-190	10,0	10,0	8,1	8,1	10,7	10,7	10,0	10,0	9,0	9,0	7,7	7,7
H [mm]	200-210	10,0	10,0	8,1	8,1	10,7	10,7	10,0	10,0	9,0	9,0	7,7	7,7
	220-230	10,5	10,5	9,1	9,1	11,7	11,7	10,5	10,5	9,5	9,5	8,7	8,7
	240-250	11,0	11,0	9,6	9,6	12,2	12,2	11,0	11,0	10,0	10,0	9,2	9,2

H	ур К	M6	-V1	M6	-V2	M6	-V3	M6-	VV1
Δ١ـ [٥	dBJ bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	9,3	-	8,0	-	/,0	-	6,3	-
	180-190	10,3	10,3	9,0	9,0	8,0	8,0	7,3	7,3
H [mm]	200-210	10,3	10,3	9,0	9,0	8,0	8,0	7,3	7,3
	220-230	11,3	11,3	9,5	9,5	8,5	8,5	8,3	8,3
	240-250	11,4	11,4	10,0	10,0	9,0	9,0	8,4	8,4

H	ур К	M7	-V1	M7	-V2	M7-	VV1	M8	-V1	M8	-V2	M8-	W1
ΔI _• [c	dB] bei	CV35	CV50										
	160-170	7,6	-	7,0	-	4,6	-	7,5	-	6,0	-	4,5	-
	180-190	8,6	8,6	8,0	8,0	5,6	5,6	8,5	8,5	/,0	/,0	5,5	5,5
H [mm]	200-210	8,6	8,6	7,0	7,0	5,6	5,6	8,5	8,5	6,5	6,5	5,5	5,5
	220-230	9,6	9,6	8,5	8,5	6,6	6,6	9,5	9,5	7,5	7,5	6,5	6,5
	240-250	10,1	10,1	9,0	9,0	7,1	7,1	10,0	10,0	8,0	8,0	7,0	7,0

Schöck Isokorb® T Typ K, Typ K-U, Typ K-O

TT	ур К	M9	-V1	M9	-V2	M9-	VV1	M10)-V1	M10)-V2	M10	-W1
Δ۱ [و	B] bei	CV35	CV50										
	160-170	5,6	-	5,0	-	2,6	-	5,1	-	4,0	-	2,1	-
	180-190	6,6	6,6	6,0	6,0	3,6	3,6	6,1	6,1	5,0	5,0	3,1	3,1
H [mm]	200-210	6,6	6,6	6,0	6,0	3,6	3,6	6,1	6,1	5,0	5,0	3,1	3,1
	220-230	/,6	/,b	6,5	6,5	4,6	4,b	/,1	/,1	5,5	5,5	4,1	4,1
	240-250	8,1	8,1	7,0	7,0	5,1	5,1	7,6	7,6	6,0	6,0	4,6	4,6

H	ур К	M1	l-V1	M11	-VV1	MI	2-V1	M12	2-V2	M1	2-V3
Δ١, [dB] bei	CV35	CV50								
	160-170	4,2	-	1,2	-	-	-	-	-	-	-
	180-190	5,2	5,2	2,2	2,2	7,0	-	7,0	-	-	-
H [mm]	200-210	5,2	5,2	2,2	2,2	7,0	7,0	7,0	7,0	6,0	-
	220-230	6,2	6,2	3,2	3,2	8,0	8,0	7,5	7,5	6,5	6,5
	240-250	6,7	6,7	3,7	3,7	8,5	8,5	8,0	8,0	7,0	7,0

TI	ур К	M1	3-V1	M1	3- V 2	M1	3-V3	M14	I-V1	M14	I-V2	M14	I-V3
Δ۱. (٥	dBJ bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	180-190	6,0	-	6,0	-	-	-	5,0	-	5,0	-	-	-
u.f1	200-210	6,0	6,0	6,0	6,0	5,0	-	5,0	5,0	5,0	5,0	4,0	-
H [mm]	220-230	7,0	7,0	7,0	7,0	6,0	6,0	6,0	6,0	6,0	6,0	5,0	5,0
	240-250	7,5	7,5	7,5	7,5	6,5	6,5	6,5	6,5	6,5	6,5	5,5	5,5

T Ty	p K-U	M1	-V1	M2	-V1	MB	-V1	M4	-V1
Δ۱ـ [٥	dB] bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	9,7	-	7,6	-	5,6	-	5,1	-
	180-190	10,/	10,/	8,6	8,6	6,6	6,6	6,1	6,1
H [mm]	200-210	10,7	10,7	8,6	8,6	6,6	6,6	6,1	6,1
	220-230	11,7	11,7	9,6	9,6	7,6	7,6	7,1	7,1
	240-250	12,2	12,2	10,1	10,1	8,1	8,1	7,6	7,6

T Ty	p K-O	M1	-V1	M2	-V1 M3-V1		M4	-V1	
Δ۱ـ [و	dB] bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	9,7	-	7,6	-	5,6	-	5,1	-
	180-190	10,7	10,7	8,6	8,6	6,6	6,6	6,1	6,1
H [mm]	200-210	10,/	10,/	8,6	8,6	6,6	6,6	6,1	6,1
	220-230	11,/	11,/	9,6	9,6	7,6	7,6	/,1	/,1
	240-250	12,2	12,2	10,1	10,1	8,1	8,1	7,6	7,6

Schöck Isokorb® T Typ Q, Typ Q-Z

T Typ Q	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
H [mm]		ΔL _w [dB]										
160-170	13,0	13,0	12,5	12,0	11,5	11,0	9,0	8,0	-	-	-	-
180-190	14,0	14,0	13,5	13,0	12,5	12,0	10,0	9,0	7,5	6,5	5,0	-
200-210	14,0	14,0	13,5	13,0	12,5	12,0	10,0	9,0	7,5	6,5	5,0	4,0
220-230	14,0	14,0	14,0	13,5	13,0	12,5	10,5	9,5	8,0	/,0	5,5	4,5
240-250	14,0	14,0	14,0	14,0	13,5	13,0	11,0	10,0	8,5	1,5	6,0	5,0

T Typ Q	VV1	W2	VV3	W4	VV5	VV6	VV7	W8	VV9	VV10	W11	VV12
H [mm]						Δl_w	[dB]					
160-170	10,5	9,5	9,0	8,5	8,0	7,4	-	-	-	-	-	-
180-190	11,5	10,5	10,0	9,5	9,0	8,4	7,0	6,0	-	-	-	-
200-210	11,5	10,5	10,0	9,5	9,0	8,4	7,0	6,0	5,5	5,0	4,5	4,0
220-230	12,0	11,0	10,5	10,0	9,5	8,9	7,5	6,5	6,0	5,5	5,0	4,5
240-250	12,5	11,5	11,0	10,5	10,0	9,4	8,0	7,0	6,5	6,0	5,5	5,0

T Typ Q-Z	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	
H [mm]		ΔL _∞ [dB]											
160-170	13,0	13,0	12,5	12,0	11,5	11,0	10,0	8,5	-	-	-	-	
180-190	14,0	14,0	13,5	13,0	12,5	12,0	11,0	9,5	9,0	8,5	8,0	-	
200-210	14,0	14,0	13,5	13,0	12,5	12,0	11,0	9,5	9,0	8,5	8,0	7,5	
220-230	14,5	14,5	14,0	13,5	13,0	12,5	11,5	10,0	9,5	9,0	8,5	8,0	
240-250	14,5	14,5	14,0	13,5	13,0	12,5	11,5	10,0	9,5	9,0	8,5	8,0	

Schöck Isokorb® T Typ Q-P, Typ Q-PZ, Typ C

T Typ Q-P	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
H [mm]					ΔL_{w}	[dB]				
160-170	11,0	11,0	10,0	-	-	-	-	-	-	-
180-190	12,0	12,0	11,0	10,0	9,0	8,0	7,0	-	-	-
200-210	12,0	12,0	11,0	10,0	9,0	8,0	7,0	6,5	6,0	5,5
220-230	12,0	12,0	11,5	10,5	9,5	8,5	1,5	7,0	6,5	6,0
240-250	12,0	12,0	12,0	11,0	10,0	9,0	8,0	7,5	7,0	6,5

T Typ Q-P	VV1	VV2	VV3	VV4	VV5	VV6	W7	VV8	VV9	VV10
H [mm]					ΔL	[dB]				
180-190	9,0	9,0	8,0	7,0	6,0	-	-	-	-	-
200-210	9,0	9,0	8,0	7,0	6,0	5,0	4,0	-	-	2,5
220-230	9,5	9,5	8,5	7,5	6,5	5,5	4,5	4,0	3,5	3,0
240-250	10,0	10,0	9,0	8,0	7,0	6,0	5,0	4,5	4,0	3,5

T Typ Q-PZ	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10			
H [mm]		ΔL, [dB]											
160-170	11,0	11,0	10,0	-	-	-	-	-	-	-			
180-190	12,0	12,0	11,0	10,0	9,0	8,0	7,0	-	-	-			
200-210	12,0	12,0	11,0	10,0	9,0	8,0	7,0	6,5	6,0	5,5			
220-230	12,5	12,5	11,5	10,5	9,5	8,5	7,5	7,0	6,5	6,0			
240-250	13,0	13,0	12,0	11,0	10,0	9,0	8,0	7,5	7,0	6,5			

T Typ C	M1-V1	M2-V1	M3-V1
H [mm]		ΔL _w [dB]	
180-190	6,5	5,5	4,5
200-210	6,5	5,5	4,5
220-230	7,0	6,0	5,0
240-250	7,5	6,5	5,5

Schöck Isokorb® T Typ H, Typ Z, Typ D

T Typ H	NN1	NN2	VV1-NN1	VV2-NN1
H [mm]		ΔL _w	[dB]	
160-170	16,0	13,0	16,0	13,0
180-190	16,0	14,0	16,0	13,0
200-210	16,0	14,0	16,0	13,0
220-230	16,0	14,0	16,0	13,0
240-250	16,0	14,0	16,0	13,0

T Typ Z	EIO	E1120	E1120-T
H [mm]		ΔL _w [dB]	
160-170	20,0	20,0	15,0
180-190	20,0	20,0	15,0
200-210	20,0	20,0	15,0
220-230	20,0	20,0	15,0
240-250	20,0	20,0	15,0

II	yp D	MM1-VV1		MM1	l-VV2	MM	11-VV3 MM2-VV1		2-VV1	MM2	2-W2	MM2	2-W3
Δ۱ـ [۵	dBJ bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	8,0	-	7,0	-	6,0	-	8,0	-	6,75	-	-	-
	180-190	9,0	-	8,0	-	7,0	-	9,0	-	7,75	-	6,5	-
H [mm]	200-210	9,0	9,0	8,0	8,0	7,0	7,0	9,0	9,0	7,75	7,75	6,5	-
	220-230	9,5	9,5	8,5	8,5	7,5	7,5	9,5	9,5	8,25	8,25	7,0	7,0
	240-250	10,0	10,0	9,0	9,0	8,0	8,0	10,0	10,0	8,75	8,75	7,5	7,5

TI	yp D	MM	-VV1	MM3	-VV2	MM	MM3-VV3 MM4-VV1 MM4-VV2		MM4-VV2		MM4	-W3	
Δ١ـ [٥	dB) bei	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	8,0	-	6,5	-	-	-	7,0	-	6,0	-	-	-
	180-190	9,0	-	7,5	-	6,0	-	8,0	-	7,0	-	6,0	-
H [mm]	200-210	9,0	9,0	7,5	7,5	6,0	-	8,0	8,0	7,0	7,0	6,0	-
	220-230	9,5	9,5	8,0	8,0	6,5	6,5	8,5	8,5	7,5	7,5	6,5	6,5
	240-250	10,0	10,0	8,5	8,5	7,0	7,0	9,0	9,0	8,0	8,0	7,0	7,0

H	yp D	MMS	-W1	MMS	-W2	MMS	-W3
ΔI _w [c	dB] bei	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	6,0	-	5,5	-	-	-
	180-190	7,0	-	6,5	-	6,0	-
H [mm]	200-210	7,0	7,0	6,5	6,5	6,0	-
	220-230	7,5	7,5	7,0	7,0	6,5	6,5
	240-250	8,0	8,0	7,5	7,5	7,0	7,0

2. SCHÖCK ISOKORB® GAMME XT – valeurs d'amélioration ΔLw (selon ETE 17/0261)

Schöck Isokorb® XT Typ K

XT1	Гур К	M1	-V1	M1	-V2	M2-V1		M2-V2	
ΔL, [0	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	14,5	-	15,6	-	14,4	-	15,1	-
	180-190	15,5	15,5	16,6	16,6	15,4	15,4	16,1	16,1
H [mm]	200-210	15,5	15,5	16,0	16,0	15,4	15,4	16,0	16,0
	220-230	16,5	16,5	15,9	17,0	16,4	16,4	15,2	16,5
	240-250	16,5	16,5	18,0	18,0	16,5	16,5	17,0	17,0

XT1	Гур К	Мз	-V1	Мз	- V 2	M3-	VV1	M4	-V1	M4	-V2
۵۱. [۵	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	13,9	-	13,9	-	12,0	-	12,7	-	13,0	-
	180-190	14,9	14,9	14,9	14,9	13,0	13,0	13,7	13,7	14,0	14,0
H [mm]	200-210	14,9	14,9	14,9	14,9	13,0	13,0	13,7	13,7	14,0	14,0
	220-230	15,9	15,9	14,5	15,5	13,0	13,0	14,7	14,7	13,9	14,5
	240-250	16,4	16,4	16,0	16,0	13,5	13,5	15,2	15,2	15,0	15,0

XTT	Гур К	M4	-V3	M4-	W1	M5	-V1	Ms	-V2	Ms	-V3	Ms-	W1
Δ۱, [٥	dB] bet	CV35	CV50										
	160-170	13,0	-	12,0	-	12,4	-	12,0	-	12,0	-	11,0	
	180-190	14,0	14,0	13,0	13,0	13,4	13,4	13,0	13,0	13,0	13,0	12,0	12,0
H [mm]	200-210	14,0	14,0	13,0	13,0	13,4	13,4	13,0	13,0	13,0	13,0	12,0	12,0
	220-230	14,0	14,0	13,0	13,0	14,4	14,4	13,5	13,5	13,0	13,0	12,0	12,0
	240-250	14,5	14,5	13,5	13,5	14,9	14,9	13,5	13,5	13,5	13,5	12,5	12,5

XTT	Гур К	M6	-V1	M6	-V2	M6	-V3	M6-VV1		
ΔL, [0	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	
	160-170	11,9	-	11,0	-	11,0	-	10,0	-	
	180-190	12,9	12,9	12,0	12,0	12,0	12,0	11,0	11,0	
H [mm]	200-210	12,9	12,9	12,0	12,0	12,0	12,0	11,0	11,0	
	220-230	13,9	13,9	13,0	13,0	12,0	12,0	11,0	11,0	
	240-250	14,4	14,4	13,0	13,0	12,5	12,5	11,5	11,5	

XT1	Гур К	M7	-V1	M7	-V2	M7-	W1	M8	-V1	M8	-V2	M8-	W1
ΔL, [0	dB] bet	CV35	CV50										
	160-170	10,2		10,1		9,0		9,4		9,0		8,0	
	180-190	11,2	11,2	11,1	11,1	10,0	10,0	10,4	10,4	10,0	10,0	9,0	9,0
H [mm]	200-210	11,2	11,2	11,1	11,1	10,0	10,0	10,4	10,4	10,0	10,0	9,0	9,0
	220-230	12,2	12,2	10,5	10,5	9,0	9,0	11,4	11,4	10,0	10,0	8,0	8,0
	240-250	12,7	12,7	12,0	12,0	9,5	9,5	11,9	11,9	11,0	11,0	8,5	8,5

Schöck Isokorb® XT Typ K, Typ K-U, Typ K-O

XT	Гур К	M9	-V1	M9	-V2	M10)-V1	M10-V2		
Δ١, [dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	
	160-170	8,3	-	8,0	-	7,4	-	6,8	-	
	180-190	9,3	9,3	9,0	9,0	8,4	8,4	7,8	7,8	
H [mm]	200-210	9,3	9,3	9,0	9,0	8,4	8,4	7,8	7,8	
	220-230	10,3	10,3	9,0	9,0	9,4	9,4	8,0	8,0	
	240-250	10,8	10,8	10,0	10,0	9,9	9,9	9,0	9,0	

XT	Тур К	M1:	1-V1	M1:	1- V 2	M1:	1-V3	M12-V1		M12-V2		M12-V3	
ا يما∆	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	180-190	10,0	-	10,0	-	-	-	9,0	-	9,0	-	-	-
II fmml	200-210	10,0	10,0	10,0	10,0	8,0	-	9,0	9,0	9,0	9,0	7,0	-
H [mm]	220-230	11,0	11,0	10,0	10,0	8,5	8,5	10,0	10,0	9,0	9,0	7,5	7,5
	240-250	11,5	11,5	11,0	11,0	9,0	9,0	10,5	10,5	10,0	10,0	8,0	8,0

XT	Гур К	M13	3-V1	Mı	3-V2	M13	I-V3
ΔL, [(dB] bet	CV35	CV50	CV35	CV50	CV35	CV50
	180-190	8,0	-	8,0	-	-	-
H [mm]	200-210	8,0	8,0	8,0	8,0	6,0	-
ri (ililii)	220-230	9,0	9,0	8,0	8,0	6,5	6,5
	240-250	9,5	9,5	9,0	9,0	7,0	7,0

XT Ty	yp K-U	M1	-V1	M2	-V1	Мз	-V1	M4-V1		
Δ١, [(dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	
	160-170	12,4	-	10,2	-	8,3	-	8,3	-	
	180-190	13,4	13,4	11,2	11,2	9,3	9,3	9,3	9,3	
H [mm]	200-210	13,4	13,4	11,2	11,2	9,3	9,3	9,3	9,3	
	220-230	14,4	14,4	12,2	12,2	10,3	10,3	10,3	10,3	
	240-250	14,9	14,9	12,7	12,7	10,8	10,8	10,8	10,8	

XT Ty	/p K-O	M1	-V1	M2	-V1	Мз	-V1	M4	-V1
∆لي [(dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	12,4	-	10,2	-	8,3	-	8,3	-
	180-190	13,4	13,4	11,2	11,2	9,3	9,3	9,3	9,3
H [mm]	200-210	13,4	13,4	11,2	11,2	9,3	9,3	9,3	9,3
	220-230	14,4	14,4	12,2	12,2	10,3	10,3	10,3	10,3
	240-250	14,9	14,9	12,7	12,7	10,8	10,8	10,8	10,8

Schöck Isokorb® XT Typ Q, Typ Q-Z

XT Typ Q	V1	V2	V 3	V4	V5	V6	V 7	V8	V 9	V10	V11
H [mm]						ΔL_{w} [dB]					
160-170	13,0	13,0	12,5	12,0	11,7	11,5	10,5	10,0	9,0	-	-
180-190	14,0	14,0	13,5	13,0	12,7	12,5	11,5	11,0	10,0	7,5	6,5
200-210	14,0	14,0	13,5	13,0	12,7	12,5	11,5	11,0	10,0	7,5	6,5
220-230	14,0	14,0	14,0	13,5	13,2	13,0	12,0	11,5	10,5	8,0	7,0
240-250	14,0	14,0	14,0	14,0	13,7	13,5	12,5	12,0	11,0	8,5	7,5

XT Typ Q	VV1	VV2	W3	VV4	VV5	VV6	VV7	VV8	VV9	VV10	W11
H [mm]						ΔL_{w} [dB]					
160-170	11,5	10,5	10,0	9,5	9,0	-	-	-	-	-	-
180-190	12,5	11,5	11,0	10,5	10,0	9,4	8,0	7,0	6,5	5,5	-
200-210	12,5	11,5	11,0	10,5	10,0	9,4	8,0	7,0	6,5	6,0	5,5
220-230	13,0	12,0	11,5	11,0	10,5	9,9	8,5	7,5	7,0	6,5	6,0
240-250	13,5	12,5	12,0	11,5	11,0	10,4	9,0	8,0	7,5	7,0	6,5

XT Typ Q-Z	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	V11	
H [mm]		ΔL_{w} [dB]										
160-170	13,0	13,0	12,5	12,0	11,7	11,5	10,5	10,0	9,0	-	-	
180-190	14,0	14,0	13,5	13,0	12,7	12,5	11,5	11,0	10,0	9,5	9,0	
200-210	14,0	14,0	13,5	13,0	12,7	12,5	11,5	11,0	10,0	9,5	9,0	
220-230	14,5	14,5	14,0	13,5	13,2	13,0	12,0	11,5	10,5	10,0	9,5	
240-250	14,5	14,5	14,0	13,5	13,2	13,0	12,0	11,5	10,5	10,0	9,5	

Schöck Isokorb® XT Typ Q-P, Typ Q-PZ, Typ C

XT Typ Q-P	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	
H [mm]		$\Delta l_{\mathbf{w}}$ [dB]									
180-190	14,0	14,0	13,0	12,0	11,0	-	-	-	-	-	
200-210	14,0	14,0	13,0	12,0	11,0	10,0	9,0	8,5	8,0	7,5	
220-230	14,0	14,0	13,5	12,5	11,5	10,5	9,5	9,0	8,5	8,0	
240-250	14,0	14,0	14,0	13,0	12,0	11,0	10,0	9,5	9,0	8,5	

XT Typ Q-P	VV1	W2	VV3	VV4	VV5	VV6	VV7	VV8	W9	VV10	
H [mm]		Δl_{w} [dB]									
180-190	11,0	11,0	10,0	-	-	-	-	-	-	-	
200-210	11,0	11,0	10,0	9,0	8,0	7,0	6,0	5,5	5,0	4,5	
220-230	11,5	11,5	10,5	9,5	8,5	7,5	6,5	6,0	5,5	5,0	
240-250	12,0	12,0	11,0	10,0	9,0	8,0	7,0	6,5	6,0	5,5	

XT Typ Q-PZ	V1	V2	V3	V4	V5	V6	V 7	V8	V9	V10	
H [mm]		ΔL_{w} [dB]									
180-190	14,0	14,0	13,0	12,0	11,0	-	-	-	-	-	
200-210	14,0	14,0	13,0	12,0	11,0	10,0	9,0	8,5	8,0	7,5	
220-230	14,5	14,5	13,5	12,5	11,5	10,5	9,5	9,0	8,5	8,0	
240-250	15,0	15,0	14,0	13,0	12,0	11,0	10,0	9,5	9,0	8,5	

XT Typ C-L/R		M1	-V1	M1	-V2	M2-V1		M2-V2	
ΔL [dB] bet		CV35	CV50	CV35	CV50	V50 CV35 CV50		CV35	CV50
	180-190	8,5	8,5	-	-	7,5	7,5	-	-
II Imml	200-210	8,5	8,5	7,5	7,5	7,5	7,5	6,5	6,5
	220-230	9,0	9,0	8,0	8,0	8,0	8,0	7,0	7,0
	240-250	9,5	9,5	8,5	8,5	8,5	8,5	7,5	7,5

Schöck Isokorb® XT Typ H, Typ Z, Typ D

XT Typ H	NN1	NN2	W1-NN1	VV2-NN1
H [mm]		Δl_w	[dB]	
160-170	18,0	15,0	18,0	15,0
180-190	18,0	16,0	18,0	15,0
200-210	18,0	16,0	18,0	15,0
220-230	18,0	16,0	18,0	15,0
240-250	18,0	16,0	18,0	15,0

XT Typ Z	Elo	El120	El120-T
H [mm]		$\Delta L_{\mathbf{w}}[dB]$	
160-170	20,0	20,0	15,0
180-190	20,0	20,0	15,0
200-210	20,0	20,0	15,0
220-230	20,0	20,0	15,0
240-250	20,0	20,0	15,0

XT Typ D		MM:	-W1	MM1	- VV 2	MM1	L- VV3	MM2-VV1		MM2-VV2		MM2-VV3	
ΔL, [0	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	10,0	-	9,0	-	8,0	-	10,0	-	8,75	-	-	
	180-190	11,0	-	10,0	-	9,0	-	11,0	-	9,75	-	8,5	-
H [mm]	200-210	11,0	11,0	10,0	10,0	9,0	9,0	11,0	11,0	9,75	9,75	8,5	-
	220-230	11,5	11,5	10,5	10,5	9,5	9,5	11,5	11,5	10,25	10,25	9,0	9,0
	240-250	12,0	12,0	11,0	11,0	10,0	10,0	12,0	12,0	10,75	10,75	9,5	9,5

XTT	ур D	MM3	-W1	MM	-VV2	MM3	MM3-VV3 MM4-VV1		MM4-VV2		MM4-VV3		
ΔL, [dB] bet		CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50	CV35	CV50
	160-170	10,0	-	8,5	-	-	-	9,0	-	8,0	-	-	-
	180-190	11,0	-	9,5	-	8,0	-	10,0	-	9,0	-	8,0	-
H [mm]	200-210	11,0	11,0	9,5	9,5	8,0	-	10,0	10,0	9,0	9,0	8,0	-
	220-230	11,5	11,5	10,0	10,0	8,5	8,5	10,5	10,5	9,5	9,5	8,5	8,5
	240-250	12,0	12,0	10,5	10,5	9,0	9,0	11,0	11,0	10,0	10,0	9,0	9,0

XTT	XT Typ D		5- VV 1	MMs	- VV 2	MM5-VV3		
ΔL, [d	dB] bet	CV35	CV50	CV35	CV50	CV35	CV50	
	160-170	8,0		7,5				
	180-190	9,0	-	8,5	-	8,0	-	
H [mm]	200-210	9,0	9,0	8,5	8,5	8,0	-	
	220-230	9,5	9,5	9,0	9,0	8,5	8,5	
	240-250	10,0	10,0	9,5	9,5	9,0	9,0	

ANNEXE 6 - Exemple de fiche d'autocontrôle

Exemple d'une fiche d'autocontrôle Mise en œuvre SCHÖCK ISOKORB dans des éléments préfabriqués

Informations générales	:					
Entreprise :						
(Nom, adresse)		-				
Responsable de l'autocontrô	le :					
(Nom, fonction)						
Référence du projet :						
(Nom, adresse)						
Désignation de la liaison à tr	aiter :					
(Niveau, localisation)						
Remarque : Cette fiche d'autocont pas à une fiche d'autocontrôle con						ponts thermiqu
Etapes pour l'autocontr	ôle:					
Documents de référence disp	onibles :					
Plan(s) de calepinage Schöck :		oui		non		
Note(s) de calcul Schöck :		oui		non		
Documentation(s) technique des modèles mis en œuvre :		oui		non		
DTA 3.1/15-348_V2:		oui		non		
Instructions de mise en œuvre Schöck :		oui		non		
Autre(s):	Si oui, le(s)	quel(s)	1			
Contrôle des documents :						
Concordance entre les plans de ca	alepinage, le t	oon de	command	de et les ru	pteurs livr	és
Concordance entre les plans de ca (dimensions de l'élément préfabrio						
Recommandations des armatures	complémenta	aires de	emandées	par Schö	ck présent	tes sur les plan
Contrôle lors de la mise en o		upteu	rs (possi	bilité d'ac	céder au	x instructions
sur la plaque signalitique du ru	pteur):					
Sens de pose des rupteurs						

Page 1 sur 227

Mise en place du ferraillage complémentaire (selon plans de ferraillage du bureau d'études structure

Respect des plans de calepinage Schöck