

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-17/0261 of 2 January 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik	
Trade name of the construction product	Schöck Isokorb [®] with compression elements made of concrete or steel	
Product family to which the construction product belongs	Load bearing thermal insulation elements which form a thermal break between balconies and internal floors	
Manufacturer	Schöck Bauteile GmbH Schöckstraße 1 76534 Baden-Baden DEUTSCHLAND	
Manufacturing plant	Schöck Bauteile GmbH, Schöckstraße 1 76534 Baden-Baden, Germany	
	Schöck Bauteile GmbH, Nordsternstraße 61 45329 Essen, Germany Schöck Bauteile Ges.m.b.H., Handwerkstraße 2 4055 Pucking, Austria	
	Schöck Sp. z o.o., ul. Przejazdowa 99, 43-100 Tychy, Poland	
This European Technical Assessment contains	72 pages including 4 annexes which form an integral part of this assessment	
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 050001-01-0301	
This version replaces	ETA-17/0261 issued on 2 June 2023	

 DIBt | Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +493078730-0 | FAX: +493078730-320 | Email: dibt@dibt.de | www.dibt.de

 Z195608.24
 8.03.01-65/23

Page 2 of 72 | 2 January 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Specific part

1 Technical description of the product

Schöck Isokorb[®] with compression elements made of concrete or steel is used as load-bearing thermal insulation element to connect reinforced concrete slabs.

The product description is given in Annex A.

The characteristic material values, dimensions and tolerances of Schöck Isokorb[®] compression elements made of concrete or steel not indicated in Annexes A1 to A18 shall correspond to the respective values laid down in the technical documentation^[1] of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if Schöck Isokorb[®] with compression elements made of concrete or steel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of Schöck Isokorb[®] with compression elements made of concrete or steel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Load bearing capacity	$ f_{yd}; Z_{Rd}; N_{Rd,c} see Annex C1 - C5, C7 \\ V_{Rd} (Z_{v,Rd}) see Annex C6 \\ D_{Rd} (N_{ki,d}) see Annex C7 - C9 \\ H_{td} (H_{II,d}; H_{\perp,d}; H_{IIpI,d}) see Annex C6, \\ C10 and C11 $

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire of materials	See Annex A18	
Resistance to fire	See Annex C12 – C14	
Propensity to undergo continuous smouldering	No performance assessed	

^[1]

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

3.3 **Protection against noise (BWR 5)**

Essential characteristic	Performance	
Impact sound insulation	ΔL_w see Annex C18 – C23	
Flanking sound transmission	No performance assessed	

3.4 Energy economy and heat retention (BWR 6)

Essential characteristic	Performance	
Thermal resistance	R _{eq,TI} see Annex C16 – C17	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 050001-01-0301, the applicable European legal act is: 97/597/EC. The systems to be applied is: 1+

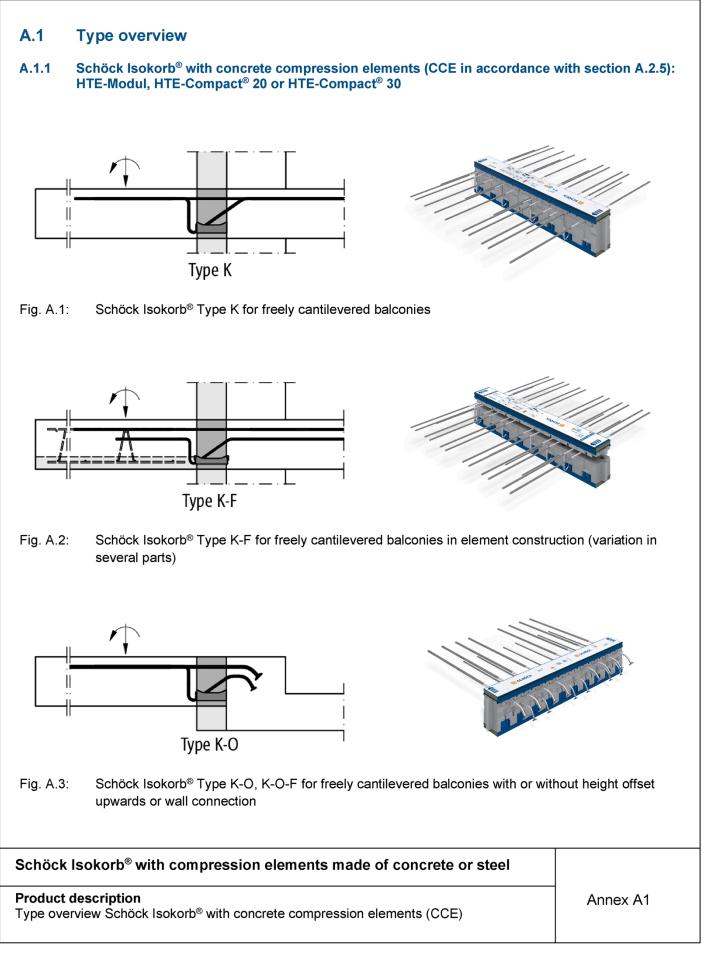
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

The following standards are referred to in this European Technical Assessment:

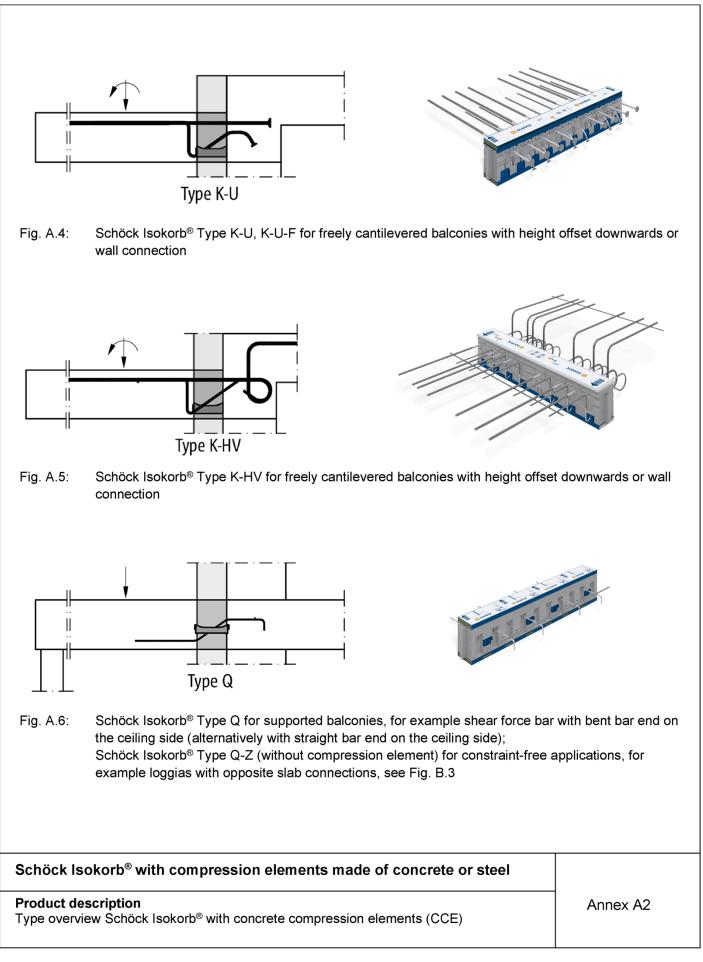
EN 206:2013+A2:2021	Concrete - Specification, performance, production and conformity		
EN 1992-1-1:2004 + AC:2010 + A1:2014	Eurocode 2 - Design of concrete structures - Part 1-1: General rules and rules for buildings, bridges and civil engineering structures		
EN 1992-1-2:2004 + AC:2008 + A1:2019	Eurocode 2: Design of concrete structures – Part 1-2: General rules – Structural fire design		
EN 1993-1-1:2005+ AC:2009 +A1:2014	Eurocode 3: Design of steel structures – Part 1-1: General design rules and rules for buildings		
EN 1993-1-4:2006/A2:2020	Eurocode 3: Design of steel structures – Part 1-4: General rules – Supplementary rules for stainless		
EN 1998-1:2004 + AC:2009 + A1:2013	Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings		
EN 10025-2:2019	Hot rolled products of structural steels – Part 2: Technical delivery conditions for non-alloy structural steels		
EN 10088-1:2023	Stainless steels – Part 1: List of stainless steels		
EN 12664:2001	Thermal performance of building materials and products – Determination of thermal resistance by means of guarded hot plate and heat flow meter methods – Dry and moist products of medium and low thermal resistance		

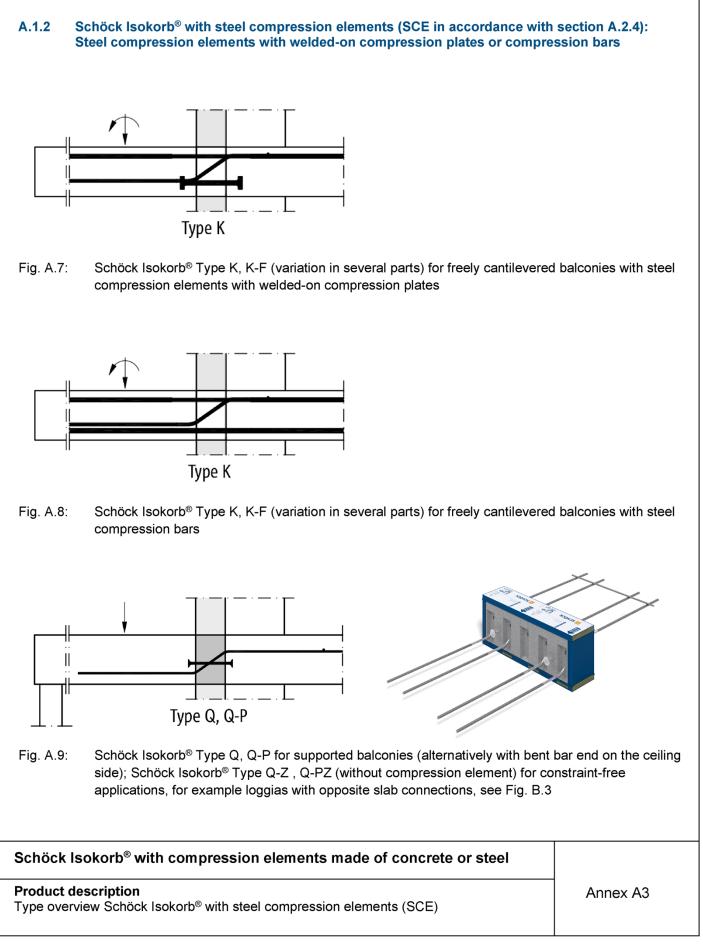
EN 13163:2012+A2:2016	Thermal insulation products for buildings – Factory made expanded polystyrene (EPS) products – Specification
EN 13245-1:2010	Plastics – Unplasticized poly (vinyl chloride) (PVC-U) profiles for building applications – Part 1: Designation of PVC-U profiles
EN 13245-2:2008 + AC:2009	Plastics – Unplasticized poly (vinyl chloride) (PVC-U) profiles for building applications – Part 2: PVC-U profiles and PVC-UE profiles for internal and external wall and ceiling finishes
EN 13501-1:2018	Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests
EN 13501-2:2016	Fire classification of construction products and building elements – Part 2: Classification using data from fire resistance tests, excluding ventilation services
EN ISO 6946:2017	Building components and building elements – Thermal resistance and thermal transmittance – Calculation method (ISO 6946:2017)
EN ISO 10211:2017	Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations (ISO 10211:2017)
EN ISO 10456:2007+AC:2009	Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009)
EN ISO 12354-2:2017	Building acoustics – Estimation of acoustic performance of buildings from the performance of elements - Part 2: Impact sound insulation between rooms (ISO 12354-2:2017)
EN ISO 17855-1:2014	Plastics – Polyethylene (PE) moulding and extrusion materials – Part 1: Designation system and basis for specifications (ISO 17855- 1:2014)
EN ISO 17855-2:2016	Plastics – Polyethylene (PE) moulding and extrusion materials – Part 2: Preparation of test specimens and determination of properties (ISO 17855-2:2016)

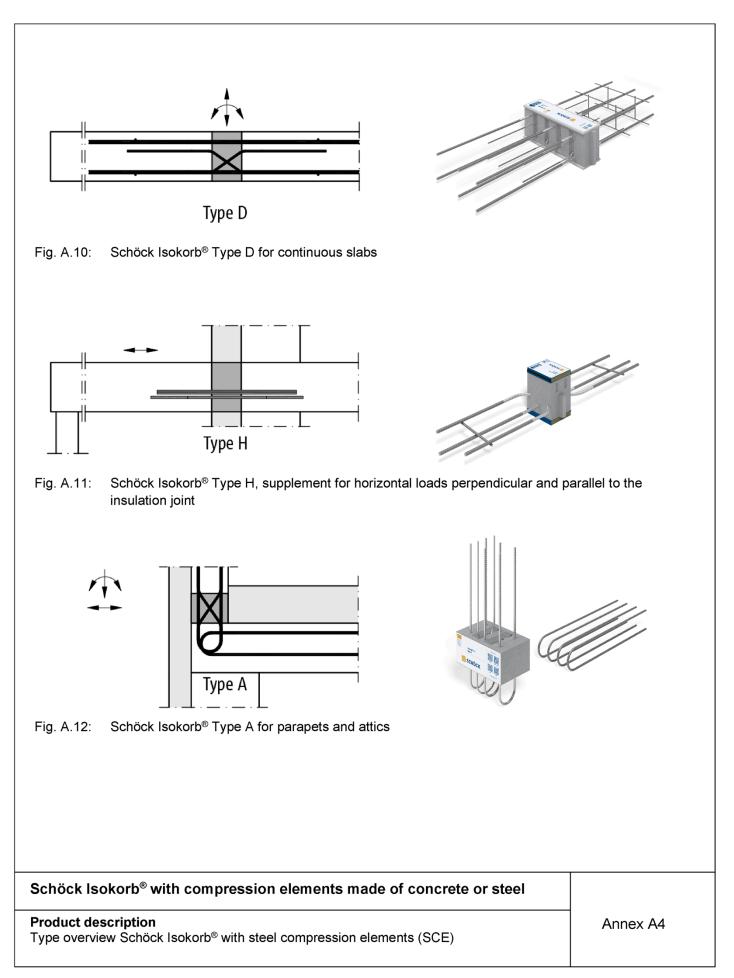

Issued in Berlin on 2 January 2025 by Deutsches Institut für Bautechnik

Dipl.-Ing Beatrix Wittstock Head of Section

b*eglaubigt:* Kisan


Page 6 of European Technical Assessment ETA-17/0261 of 2 January 2025


Page 7 of European Technical Assessment ETA-17/0261 of 2 January 2025


Page 8 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 9 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 10 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

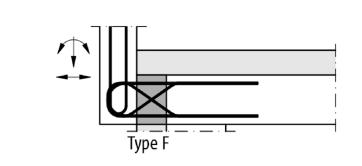


Fig. A.13: Schöck Isokorb[®] Type F for facing parapets

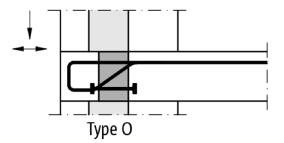
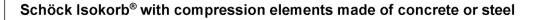



Fig. A.14: Schöck Isokorb® Type O for consoles

Product description

Type overview Schöck Isokorb® with steel compression elements (SCE)

Annex A5

Page 11 of European Technical Assessment ETA-17/0261 of 2 January 2025

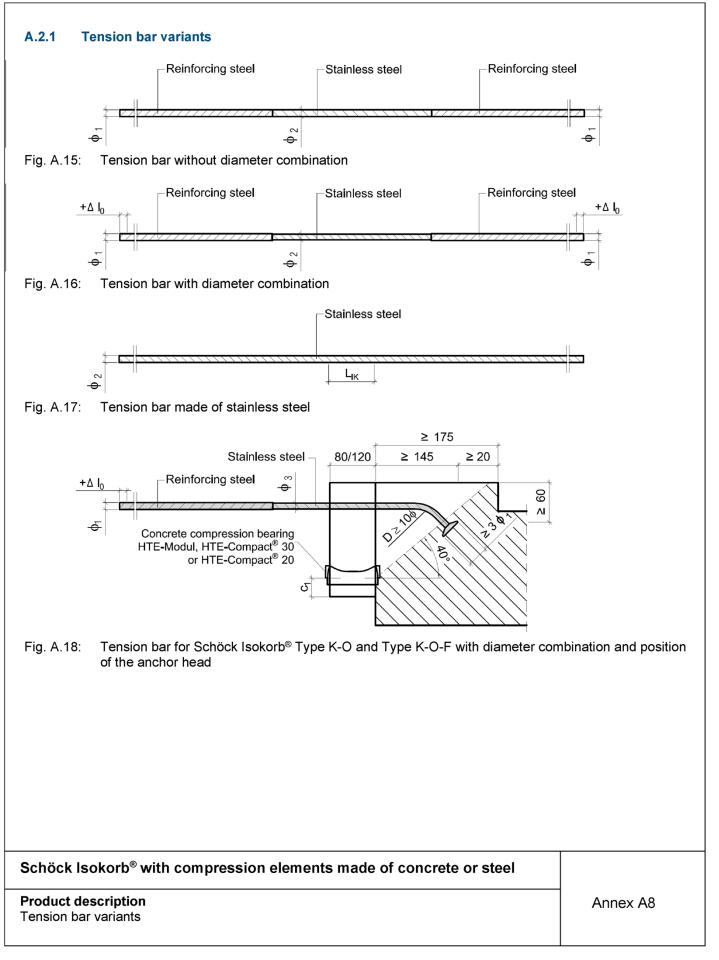
English translation prepared by DIBt

A.2	Dimensions and position of the bars and compression elements in the area of the insulation joint					
Genera	General:					
1.1	Element height:	160 mm ≤ H ≤ 500 mm				
•	Insulation thickness:	80 mm or 120 mm with concrete compression elements (CCE) 60 mm to 120 mm with steel compression elements (SCE)				
Tensior	bars in accordance with section A.2.1:					
1.1	Diameter:	$\emptyset \le 20 \text{ mm}$ graded nominal diameter in accordance with section A.2.1				
	Number per meter:	n ≥ 4/m				
	Axial distance:	\leq 300 mm, on average \leq 250 mm				
	Embedded length of stainless steel	≥ 100 mm within the adjacent concrete components				
Shear f	orce bars in accordance with section A.2.	2:				
	Diameter:	$\emptyset \le 8$ mm when arranged between individual elements of the compression bearing pairs CCE (Type K, K-F with CCE) with integrated reinforcement stirrups (see Fig. A.21, Fig. A.22 and Fig. A.25) $\emptyset \le 14$ mm for all other types graded nominal diameter are permitted, section D.1.2.8 shall be observed				
	Number per meter:	n ≥ 4/m when arranged between individual elements of the compression bearing pairs CCE (Type K, K-F with CCE) $n \ge 2/m$ for Ø < 8 mm $n \ge 4/m$ for Ø ≥ 8 mm				
•	Axial distance:	\leq 300 mm, on average \leq 250 mm when arranged between individual elements of the compression bearing pairs CCE (Type K) \leq 600 mm, on average \leq 500 mm for \emptyset < 8 mm \leq 300 mm, on average \leq 250 mm for \emptyset > 8 mm				
	Embedded length of stainless steel:	≥ 100 mm within the adjacent concrete components				
	Inclination in the insulation joint:	α = 45° for 60 mm or 80 mm insulation thickness, α = 35° at 120 mm insulation thickness for simplified calculation or 30° ≤ α ≤ 70° for detailed calculation in accordance with section C.1.1.2				
	Concrete-free area:	bars shall not have any bends				
	Bends start point:	\geq 2 × Ø inside the concrete, measured in bar direction				
1	Mandrel diameter:	$\emptyset_{BR} \ge 10 \times \emptyset$ for simplified calculation or $\emptyset_{BR} \ge 4 \times \emptyset$ for detailed calculation in accordance with section C.1.1.2				
	Bending roll diameter in the area of the concrete compression element (CCE):	in accordance with section A.2.2 and Fig. A.48 and in compliance with the simplified calculation (section C.1.1.2)				
Schöck	Isokorh [®] with compression elements	made of concrete or steel				

Schöck lsokorb[®] with compression elements made of concrete or steel

Product description Dimensions Annex A6

English translation prepared by DIBt


Г

Horizor	ntally inclined bars in accordance with se	action A 2 3:			
HORIZOI	Diameter:	$\emptyset \le 12 \text{ mm}$			
1.1	Stainless steel embedded length:	≥ 100 mm within the adjacent concret	e components		
	Inclination in the insulation joint:	α = 45°	·		
	Concrete-free area:	Bars shall not have curvature			
		$Ø_{BR} \ge 10 \times Ø$			
	Starting point of internal curvature:	\geq 2 × Ø of free concrete surface, mea	sured in bar direction		
Steel co	ompression elements (SCE) in accordan	ce with section A.2.4:			
	Diameter:	Ø ≤ 20 mm			
	Number per meter:	$n \ge 4$ / meter; $n \ge 1$ / connection elements $n = 0$ for constraint-free applications (
	Axial distance within the connection elem	ent: ≤ 300 mm, on average ≤ 250 mm			
	Three variants:				
	1) Compressive forces are transmitte	ed via the composite effect of the reinfor	cing steel		
	 embedded length stainless 	s steel \ge 100 mm within the adjacent cor	crete components		
	2) Forwarding via a compression pla	te			
	 Compression plate is made embedded length stainless 	e of structural steel s steel ≥ 50 mm within the adjacent conc	crete components		
	 Compression plate is made of stainless steel embedded length Stainless steel can be flush 				
	 Compression plates are welded to the front sides of the compression bars in a force- locking manner 				
	3) Forwarding via a compressed head				
	 Ø₂ = 10 mm, 12 mm, 14 m 	m or 16 mm; $\emptyset_{K} \ge 3 \times \emptyset_2$ (see Fig. A.43)		
Concre	te compression elements (CCE) in accor	dance with section A.2.5:			
	Number per meter:	$n \ge 4$ / meter; $n \ge 4$ / connection elements $n = 0$ for constraint-free applications (
1.1	Clear spacing within the connection elem	ent: ≤ 250 mm			
Schöck	Isokorb [®] with compression element	s made of concrete or steel			
Product Dimensi	description		Annex A7		
2					

Page 13 of European Technical Assessment ETA-17/0261 of 2 January 2025



Page 14 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

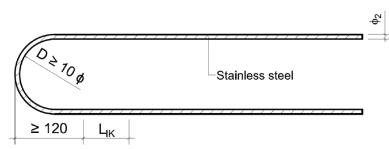
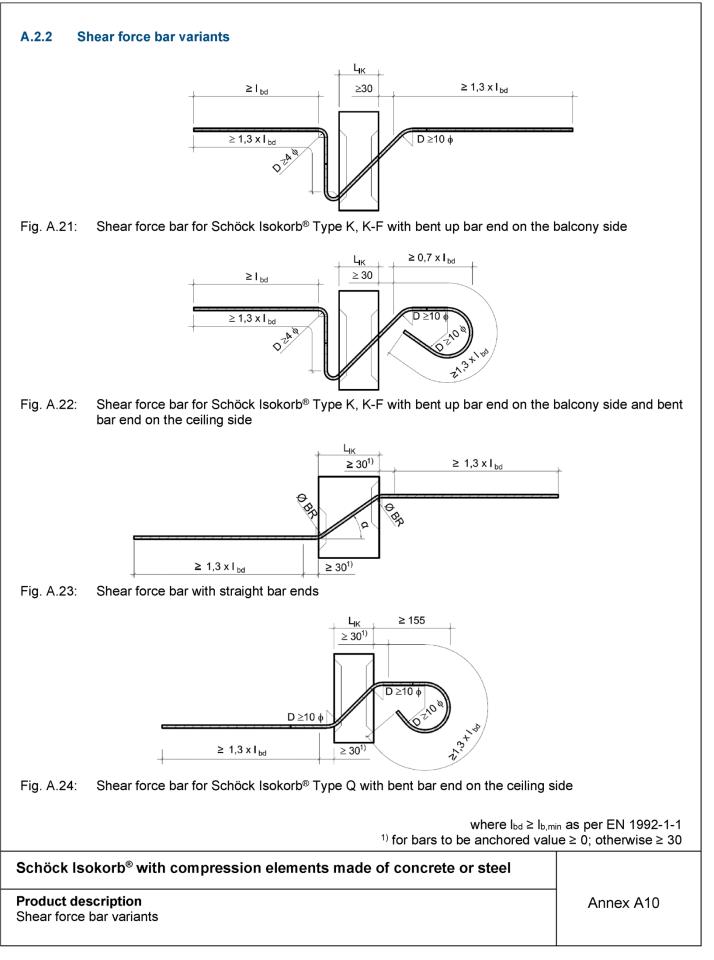


Fig. A.20: Tension bar for Schöck Isokorb® Type A and Type F

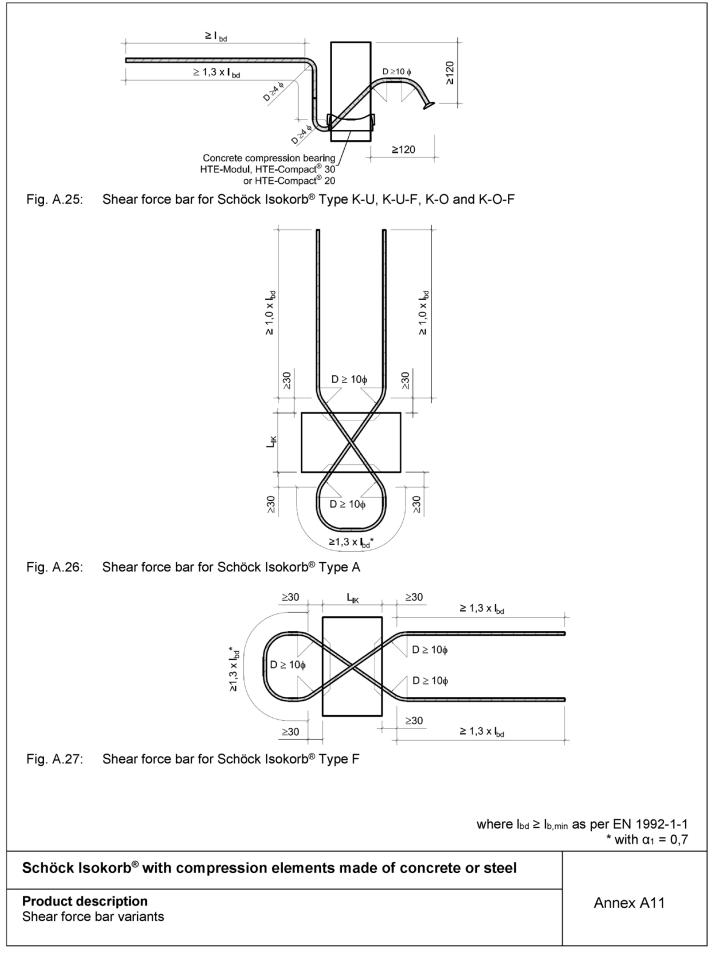
Table A.1:	Diameter combinations and additions to the overlap length for tension bars according to Fig. A.16
Table A.T.	Diameter combinations and additions to the overlap length for tension bars according to Fig. A. To

Graded tension bars Ø ₁ - Ø ₂ - Ø ₁	R _{p0,2} [N/mm²] for reinforcing steel with Ø₁ [mm]	R _{p0,2} [N/mm²] for stainless steel with Ø ₂ [mm]	∆ l₀ [mm]
8 - 6,5 - 8	500	800	20
8 - 7 - 8	500	700	13
10 - 8 - 10	500	700 / (820 optional)	20
12 - 9,5 - 12	500	820	20
12 - 10 - 12	500	700	17
12 - 11 - 12	500	700	9
14 - 12 - 14	500	700	14

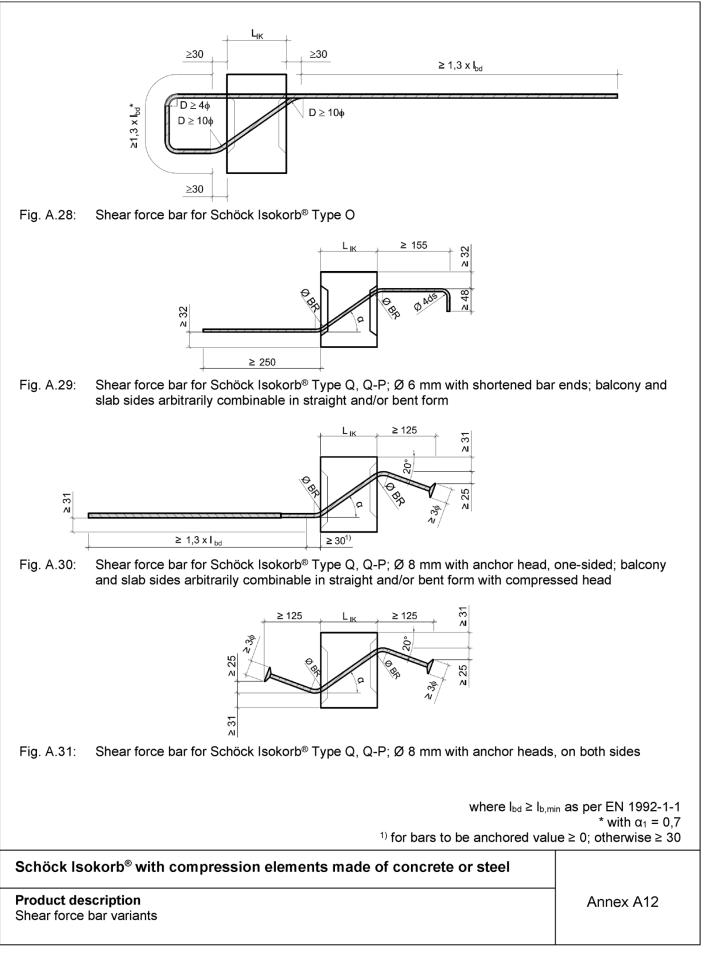

Table A.2:Diameter combinations and additions to the overlap length for tension bars according to Fig. A.18and Fig. A.19

Graded tension bars Ø ₁ - Ø ₃	R _{p0,2} [N/mm²] for reinforcing steel with Ø₁ [mm]	R _{p0,2} [N/mm²] for stainless steel with Ø₃ [mm]	∆ l₀ [mm]
12 - 10	500	700	17

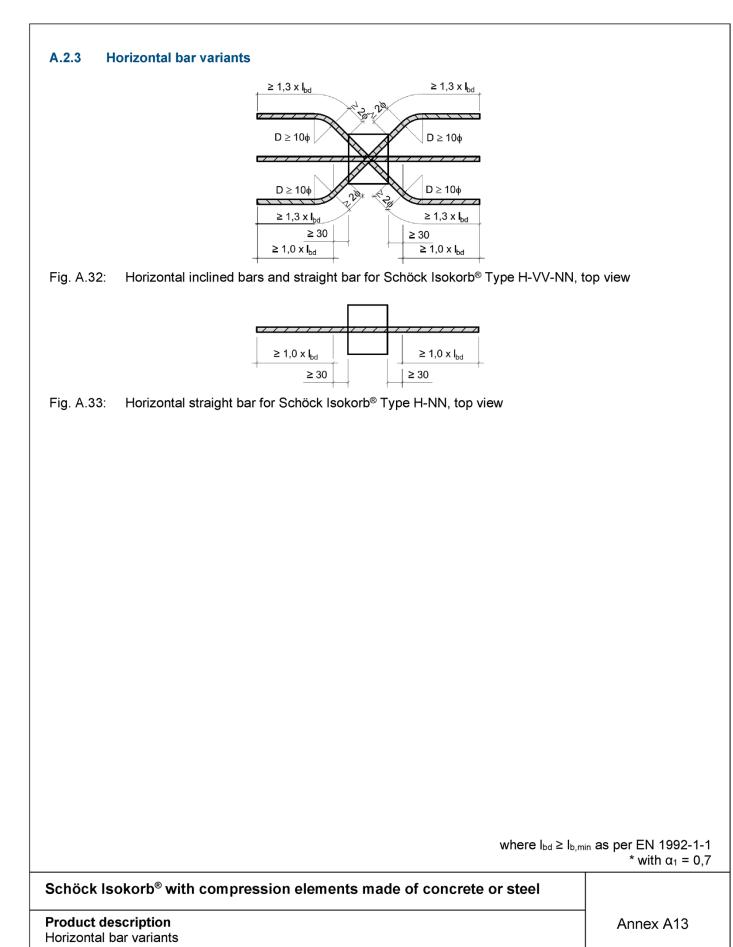
Schöck Isokorb® with compression elements made of concrete or steel


Product description Tension bar variants Annex A9

Page 15 of European Technical Assessment ETA-17/0261 of 2 January 2025

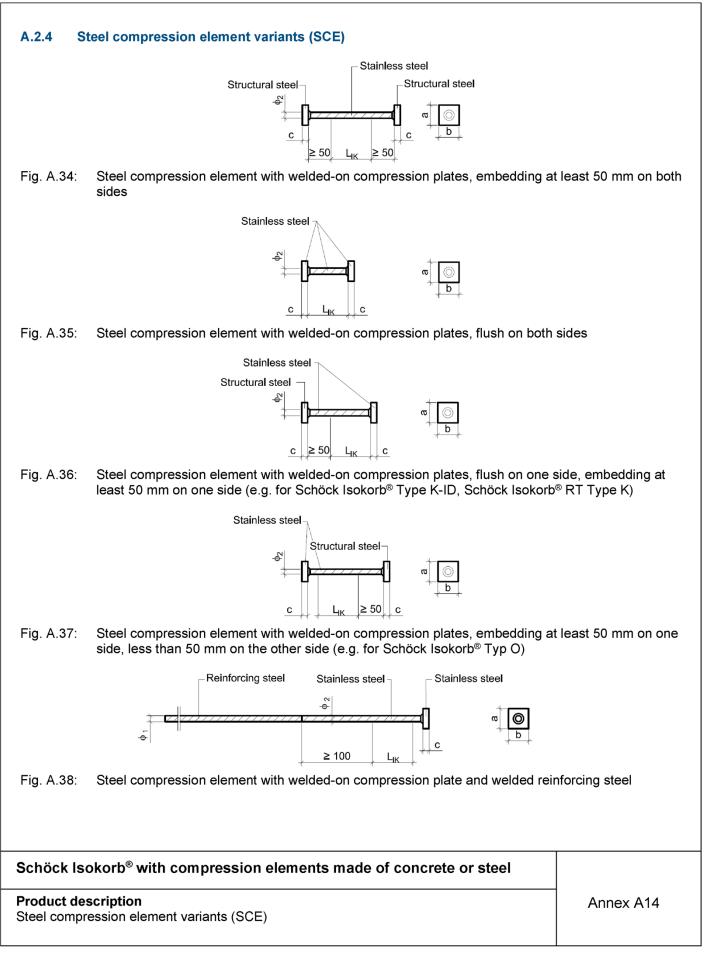

Page 16 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 17 of European Technical Assessment ETA-17/0261 of 2 January 2025

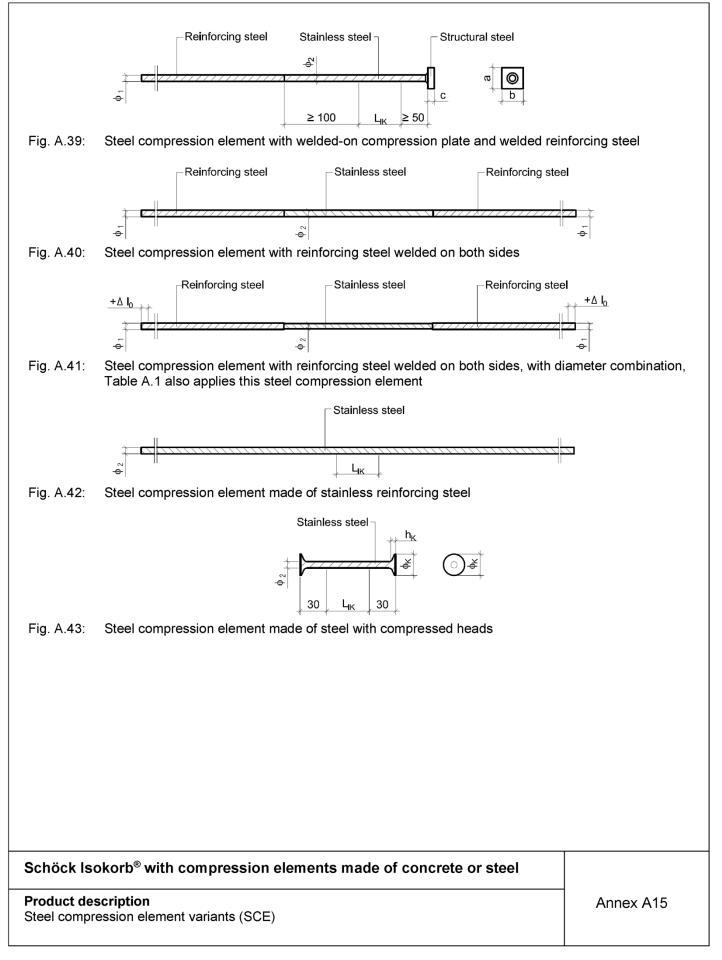


Page 18 of European Technical Assessment ETA-17/0261 of 2 January 2025

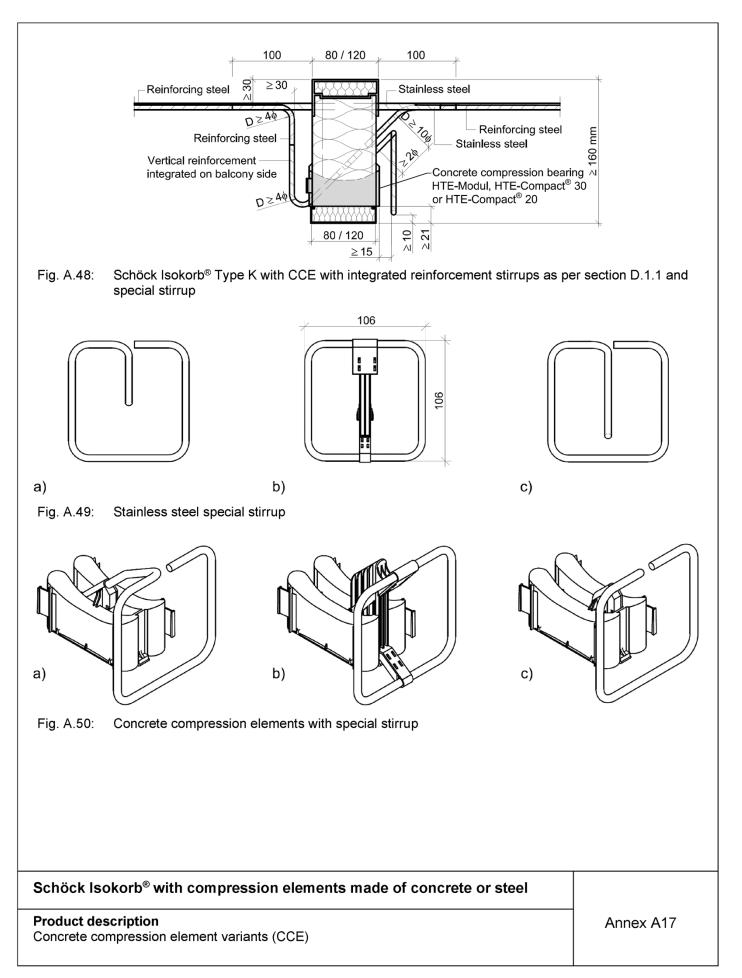
English translation prepared by DIBt



8.03.01-65/23


Page 19 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 20 of European Technical Assessment ETA-17/0261 of 2 January 2025



A.2.5 Concrete compression element variants (CCE)	
Fig. A.44: Concrete compression element HTE-Modul and HTE-Compact® 30, insulation thickness 80 mmFig. A.45: Concrete comp HTE-Modul and insulation thickness 100 mm	HTE-Compact [®] 30,
Fig. A.46: Concrete compression element Fig. A.47: Concrete compression element	ression element
HTE-Compact [®] 20, HTE-Compact [®] insulation thickness 80 mm insulation thickness	20,
Schöck Isokorb [®] with compression elements made of concrete or steel Product description Concrete compression element variants (CCE)	Annex A16

Page 22 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 23 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

A.3 Materials					
Reinforcing steel:	B500B, class A1 in accordance with EN 13501-1				
Stainless steel:	Stainless reinforcing steel, stainless steel round bars (S355, S460, S690), stainless flat steel for compression plates (S235, S275, S460) with corrosion resistance class III in accordance with EN 1993-1-4, class A1 in accordance with EN 13501-1				
Structural steel:	S235JR, S235J0, S235J2, S355JR, S355J2 or S355J0 in accordance with EN 10025-2 for compression plates, class A1 in accordance with EN 13501-1				
Concrete for compression element CCE:	High-performance fine-grained concrete, class A1 in accordance with EN 13501-1				
Insulation joint:	Polystyrene rigid foam (EPS) in accordance with EN 13163, class E in accordance with EN 13501-1				
Fire protection material:	Moisture repellent, weather-resistant and UV-resistant panels, class A1 in accordance with EN 13501-1				
Plastic formwork CCE:	PE-HD plastic in accordance with EN ISO 17855-1 and EN ISO 17855-2, class E in accordance with EN 13501-1				
Plastic rail:	PVC-U in accordance with EN 13245-1 and EN 13245-2, class E in accordance with EN 13501-1				

Schöck lsokorb[®] with compression elements made of concrete or steel

Product description Materials Annex A18

English translation prepared by DIBt

B.1 Intended use

This product can be used to connect exterior slabs as well as vertical components such as consoles, walls, parapets or attics. The forces are transferred to the adjacent components by bonding or surface pressure. Mainly the product is to be used:

- for minimizing thermal bridges in structures,
- for the transmission of static or quasi-static action loads,
- for the transmission of seismic loads,
- for structural members with fire resistance requirements,
- for structural members with sound insulation requirements,
- for reinforced concrete components to be connected made of normal strength concrete of the minimum concrete strength class in accordance with EN 206: C20/25, for exterior components C25/30,
- for connection for 160 mm to 500 mm thick slabs made of reinforced concrete
- for connection for 150 mm to 500 mm thick vertical components made of reinforced concrete

B.1.1 Design

The provisions of EN 1992-1-1 in connection with EN 1993-1-1 and in accordance with Annex D shall apply.

- The connected slab shall be divided by joints to reduce thermal loads, see section B.2.1.
- The structural verification of the further transmission of the transferred forces shall be provided. The verification of the transfer of forces between Schöck Isokorb[®] elements and the connected reinforced concrete shall be carried out in accordance with Annex D.
- The deviations from the strain of a structurally identical slab without an insulation joint are limited to the
 joint area and the connecting edges through compliance with the provisions of this European Technical
 Assessment.
- The undistributed strain may then be assumed to exist at a distance h from the joint edge.
- Variable moments and shear forces along a connected edge shall be considered in the structural analysis.
- Strain on the slab connections due to local twisting moments (torques) shall be excluded.
- Small normal forces due to imposed deformation in the girder bars (at the end of the line supports, e.g. beside free edges or expansion joints) shall be neglected in the calculation, normal constraining forces in the direction of the bars of the slab connections shall be excluded (see section B.2.1 for example).
- If the slabs to be connected to the load bearing thermal insulating elements are implemented as prefabricated concrete slabs, Fig. B.7 shall be observed.
- The ratio of height / width of the adjacent structural members should not exceed the ratio 1/3, if no special verification is provided for the transfer of the transverse tensile stresses.
- Cutting of the elements is allowed. The conditions according to section A.2 shall be met after cutting.

Schöck Isokorb[®] with compression elements made of concrete or steel

Intended use Conditions of use

Annex B1

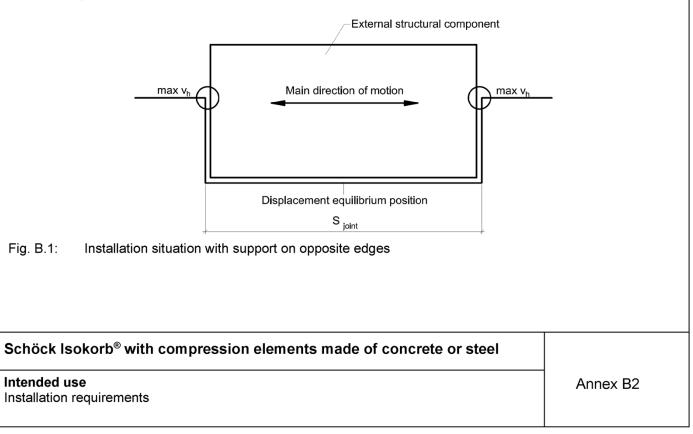
English translation prepared by DIBt

B.2 Installation requirements

B.2.1 Centre and joint spacing

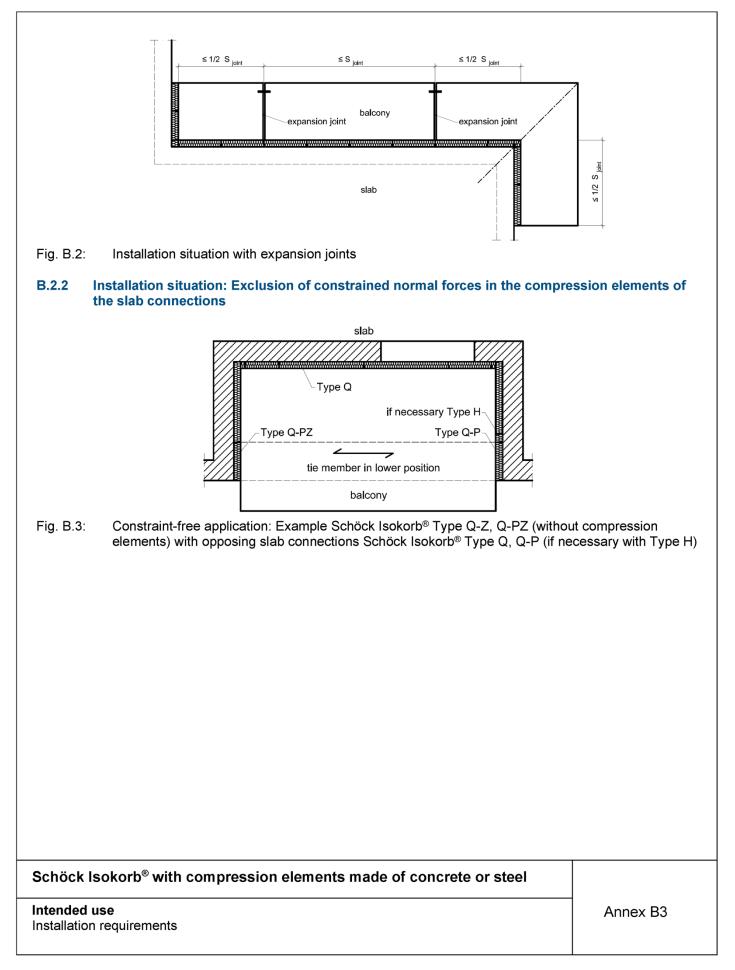
 Tensile and compression members, shear force bars (additional provisions in accordance with section C.1.1.2 and D.1.2.5):

50 mm \leq s₁ $\leq \frac{1}{2}$ s_{2,max}


with:

- s₁ center distance from the free edge or the expansion joint
- s_{2,max} permissible maximum distance between the bars
- External reinforced concrete components: expansion joints shall be placed in a right angle to the insulation joint (see Fig. B.2)
- Joint spacing: Table B.1
- Schöck Isokorb[®] Types H-VV-NN, in accordance with Fig. A.11 and Fig. A.32, are to be arranged in the area of the displacement rest point (compare Fig. B.1)

Table B.1: Permitted joint spacing in [m]*


Thickness of the	Bar diameter in the joint [mm]						
insulation joint [mm]	≤ 9,5	10	11	12	14	16	20
60	8,1	7,8	7,3	6,9	6,3	5,6	5,1
80	13,5	13,0	12,2	11,7	10,1	9,2	8,0
120	23,0	21,7	20,6	19,8	17,0	15,5	13,5

*Linear interpolation is allowed for intermediate values.

Page 26 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 27 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

B.2.3 Structural design

The minimum concrete cover in accordance with EN 1992-1-1 shall be observed. This applies to tensile bars, shear reinforcement or existing installation reinforcement. The reinforcement of the concrete structures connected to the load bearing thermal insulation elements shall be extended to the insulation joint in consideration of the required concrete cover in accordance with EN 1992-1-1.

The transverse bars of the upper connection reinforcement shall generally lie on the outside on the longitudinal bars of the slab connections. In the case of bars with a nominal diameter $\emptyset < 16$ mm an exception may be made if the following conditions are respected:

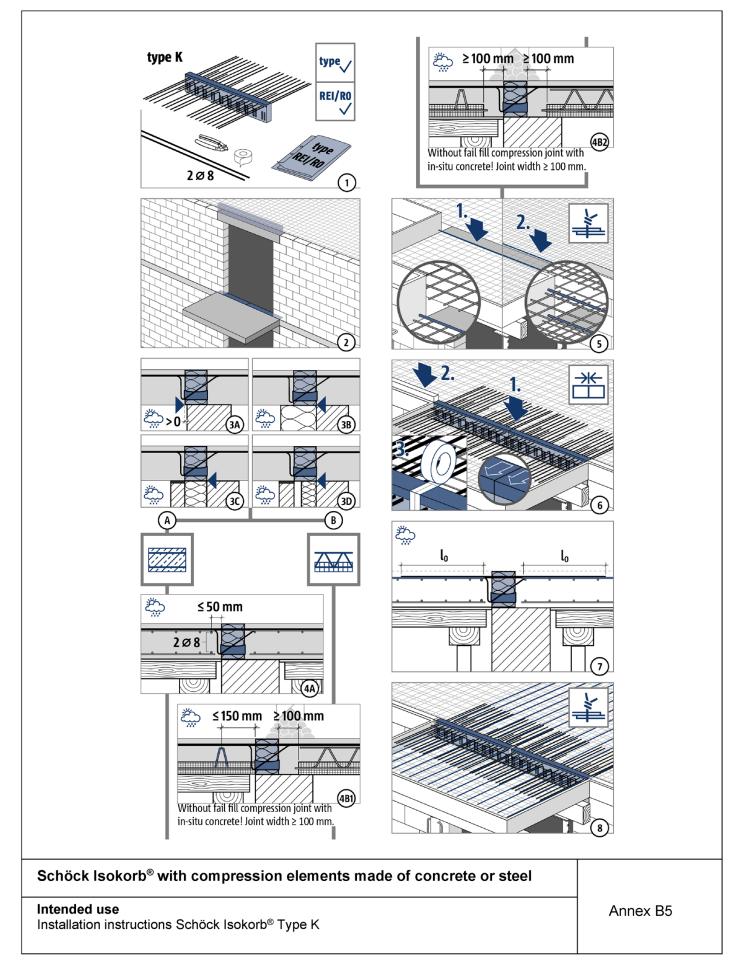
- The installation of the shear force bars directly underneath the longitudinal bars of the slab connection is possible.
- The installation is monitored, e.g. by construction engineer.
- The necessary installation steps shall be described in the installation instructions (see Annex B5).

The front surface of the components to be connected shall receive edge reinforcement in accordance with EN 1992-1-1, section 9.3.1.4, e.g. in the form of stirrups with at least $\emptyset \ge 6$ mm, s ≤ 250 mm and 2 longitudinal bars each with $\emptyset \ge 8$ mm. The vertical legs of the shear force bars for Schöck Isokorb[®] Types K, K-F, K-O, K-U and HV (see Fig. A.21, Fig. A.22 and Fig. A.25) as well as lattice girders with a maximum distance of 100 mm from the insulation joint in accordance with Fig. B.7 shall be permitted.

Edge reinforcement on the component sides running parallel to the load bearing thermal insulation elements shall be installed as follows:

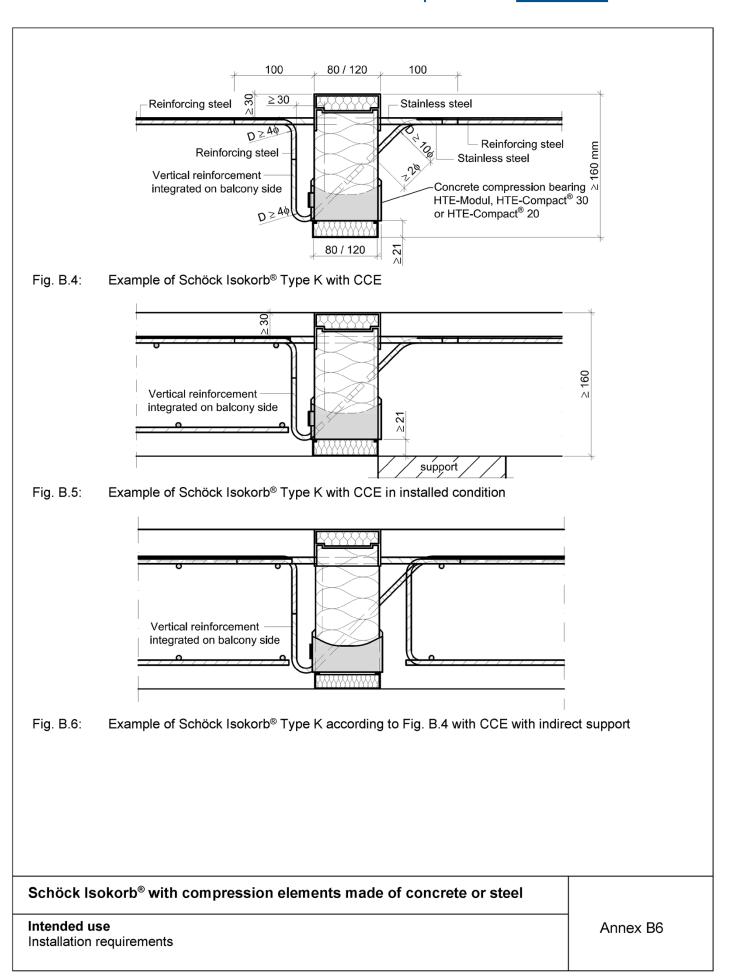
- Moments and shear forces are transferred:
 - 1. Shall overlap the tensile bars.
- Uplift shear forces or uplifting moments are transferred:
 - 1. Shall overlap the tensile bars and compression bars.
- Exclusively shear forces are transferred:
 - 1. The required tensile reinforcement shall not be graded around the load bearing thermal insulation element.
 - 2. The tensile reinforcement shall be anchored in the compression zone on the frontal side with hooks.
 - 3. Alternatively: stirrups at every shear force bar.

Subsequent bending of the bars of the load bearing thermal insulation element is not permissible.


Schöck Isokorb[®] with compression elements made of concrete or steel

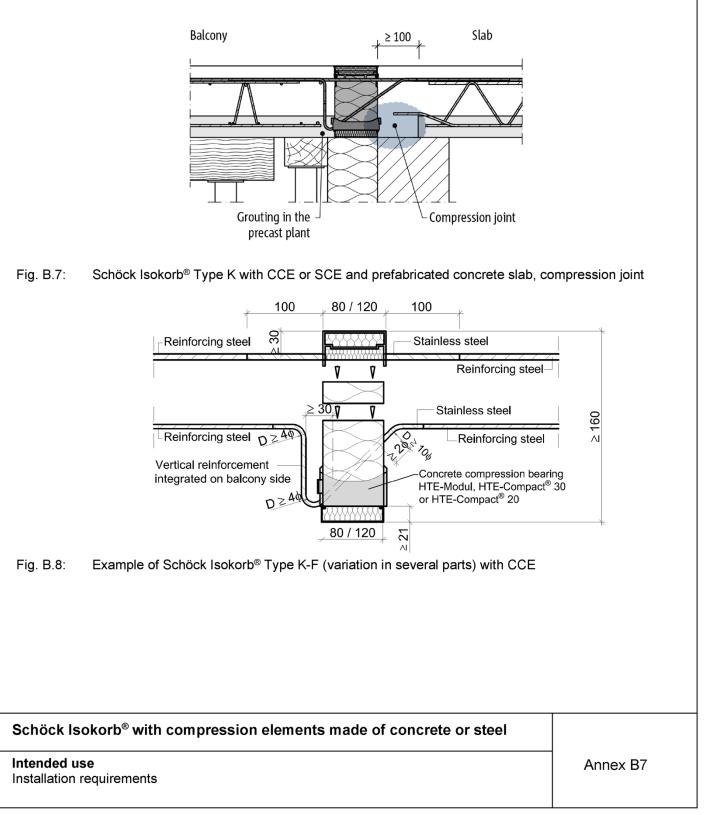
Intended use Installation requirements

Annex B4

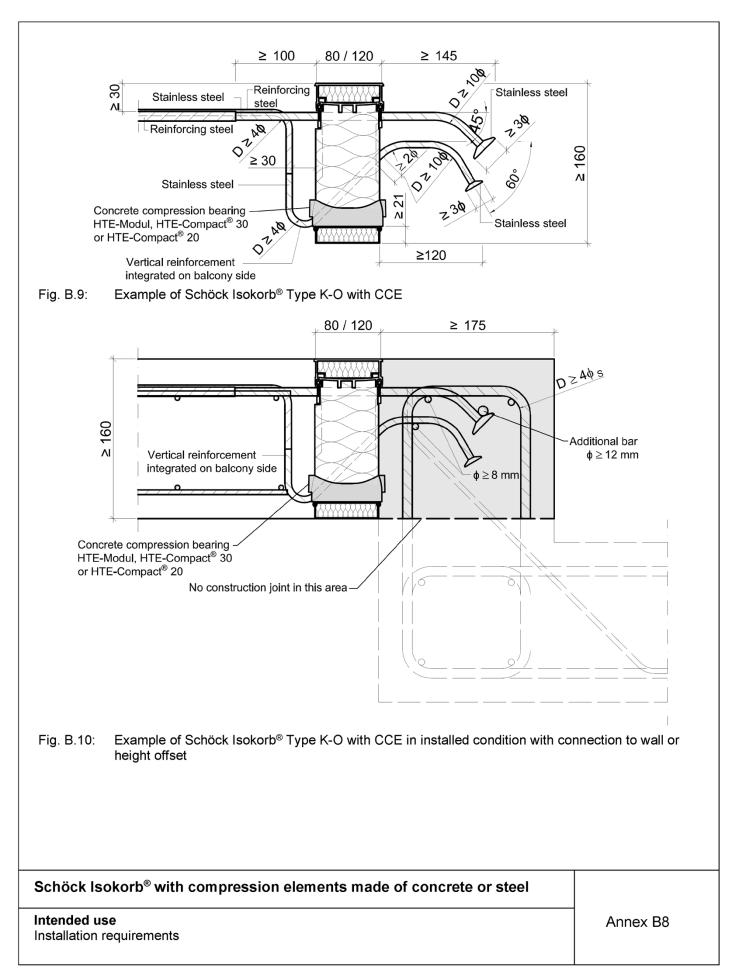

Page 28 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 29 of European Technical Assessment ETA-17/0261 of 2 January 2025

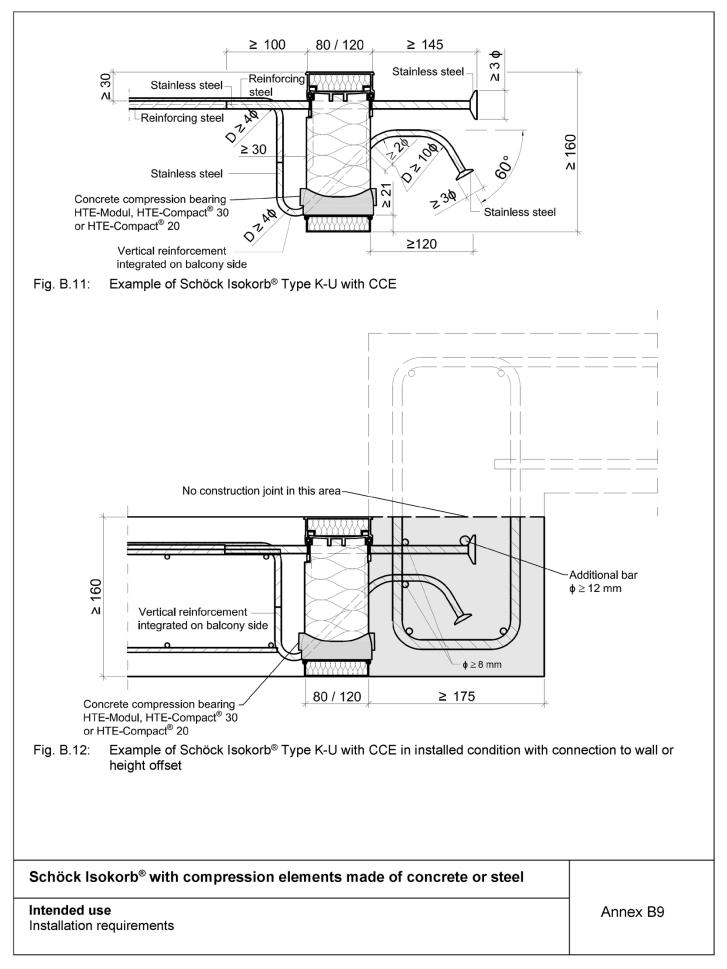
English translation prepared by DIBt

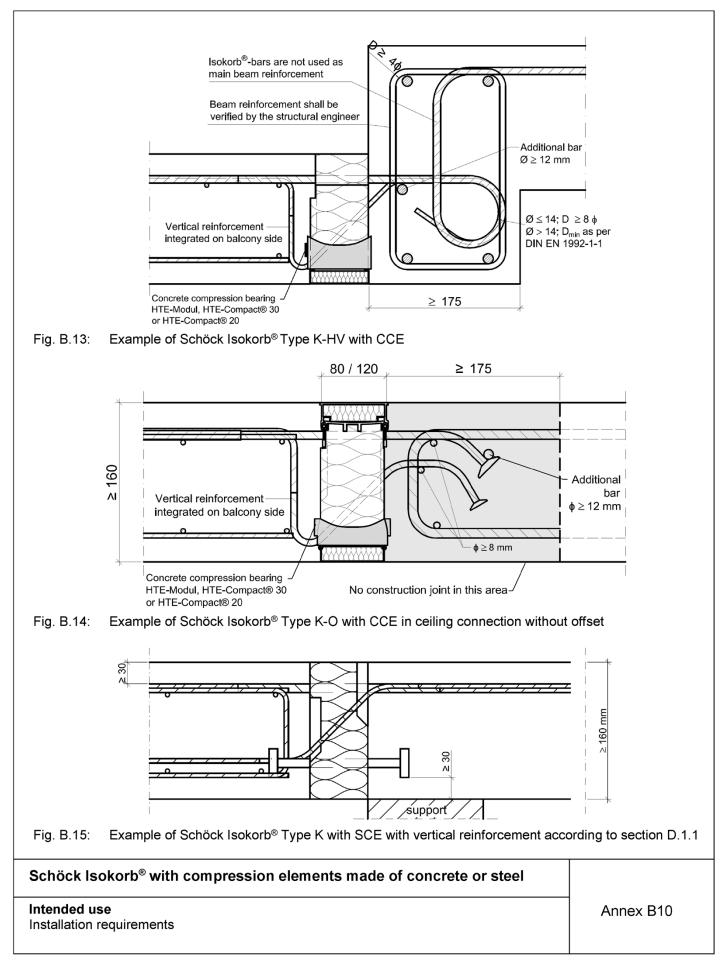

Deutsches

Institut für Bautechnik

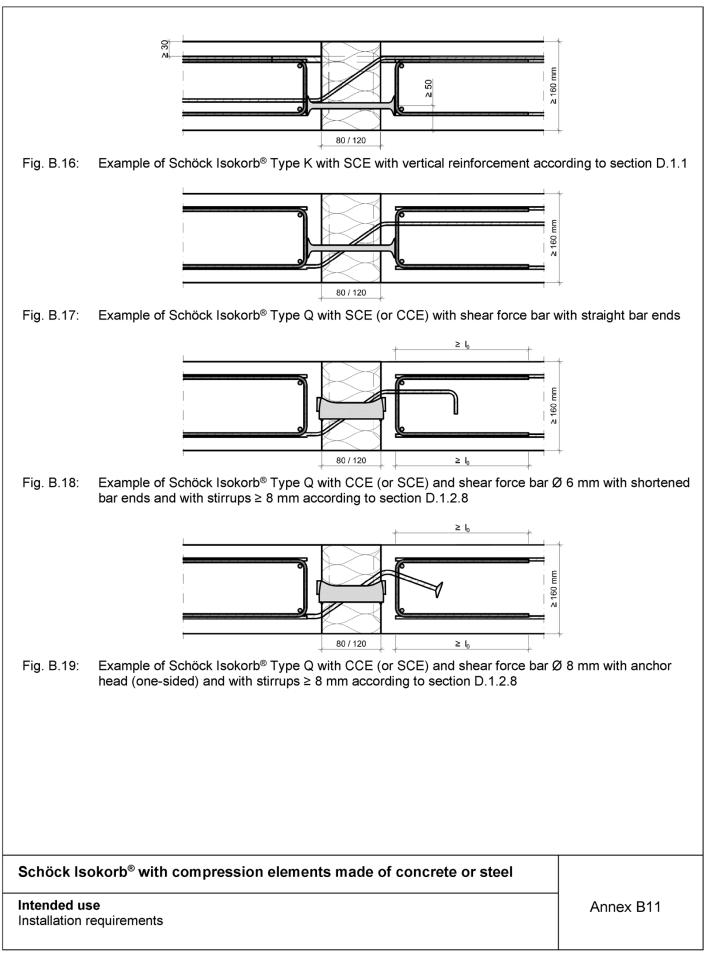

If the slabs connected to the load bearing thermal insulation elements are implemented as prefabricated concrete slabs, the following conditions should be respected:

- In-situ concrete section in accordance with Fig. B.7 with a width of at least 100 mm shall be carried out between the load bearing thermal insulation element and the prefabricated concrete slab
- The concrete composition of the in-situ concrete area (maximum aggregate size dg) shall be matched with this distance


Page 31 of European Technical Assessment ETA-17/0261 of 2 January 2025

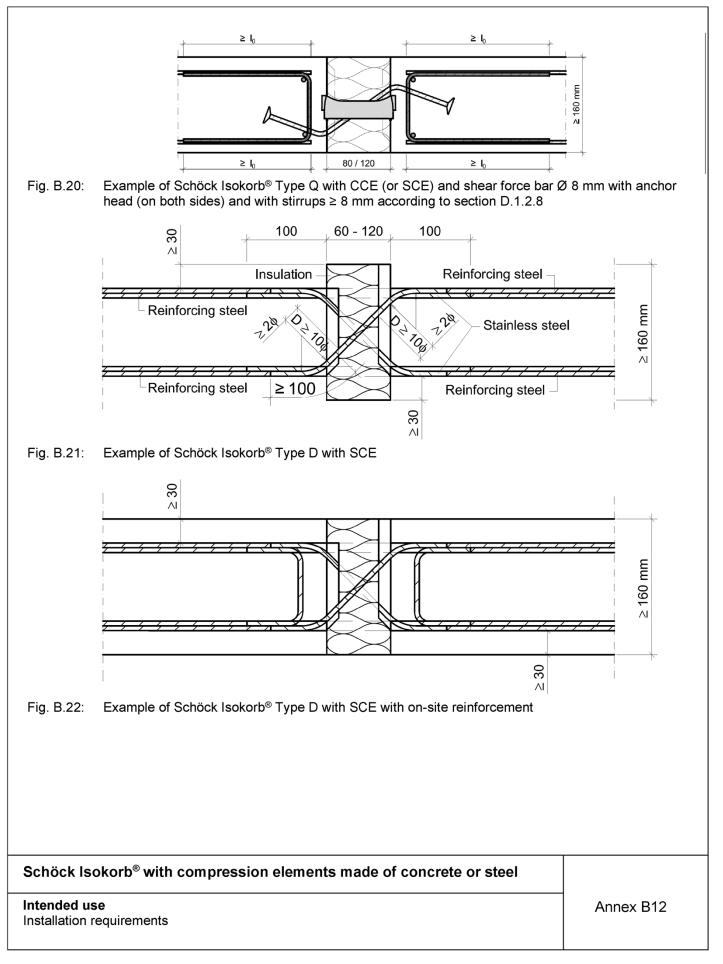

Page 32 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 33 of European Technical Assessment ETA-17/0261 of 2 January 2025

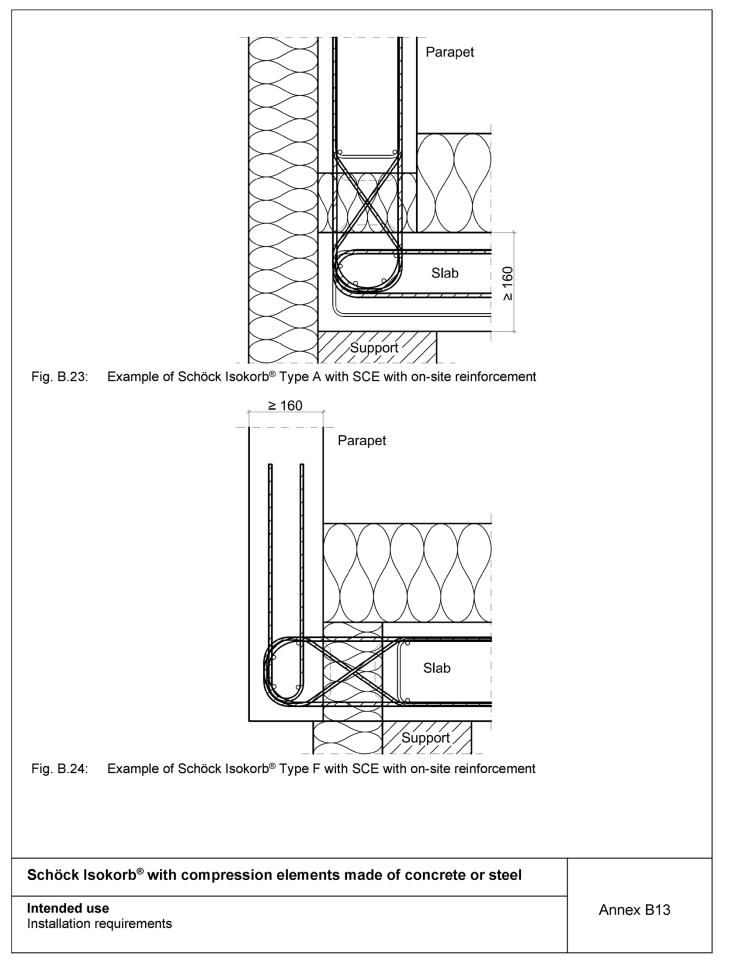


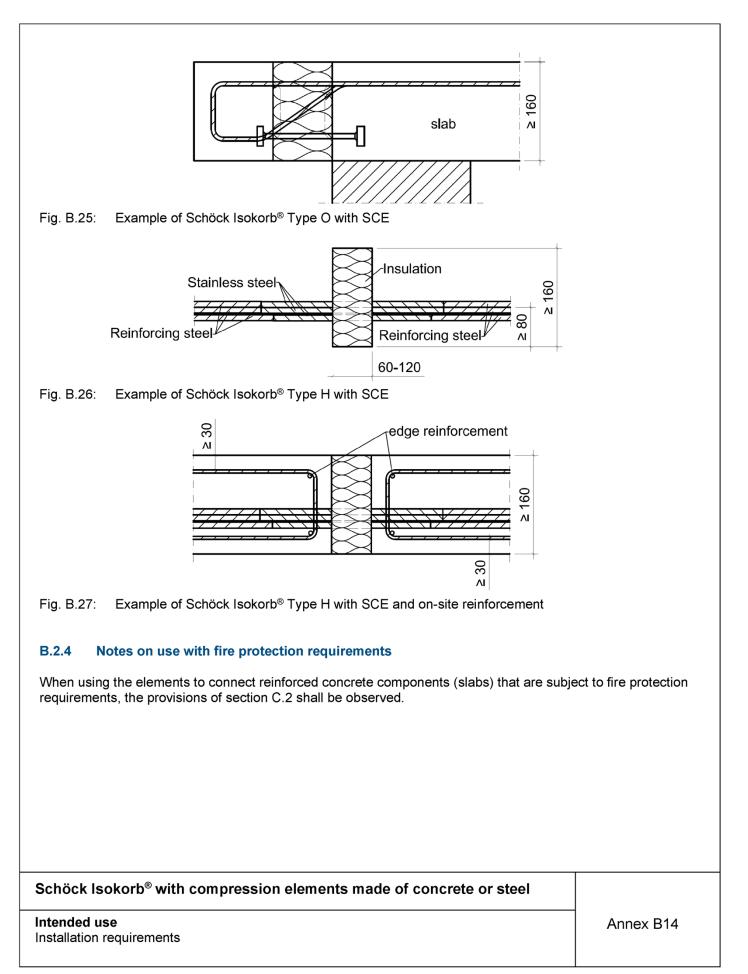
Page 34 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt



Z195369.24


Page 35 of European Technical Assessment ETA-17/0261 of 2 January 2025


Page 36 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 37 of European Technical Assessment ETA-17/0261 of 2 January 2025

C.1 Load bearing capacity

C.1.1 Load bearing capacity of bars

C.1.1.1 Tension bars according to section A.2.1

Table C.1:Design values of the yield strengths for tension loads

Staff from	f _{yd} [N/mm²]
Stainless reinforcing steel (R _{p0.2} = 500 N/mm ²)	435
Stainless reinforcing steel (R _{p0.2} = 700 N/mm ²)	609
Stainless reinforcing steel (R _{p0.2} = 800 N/mm ²)	661
Stainless reinforcing steel (Rp0.2 = 820 N/mm²)	678
Stainless steel round bars S355	323
Stainless steel round bars S460	418
Stainless steel round bars S690	627

C.1.1.2 Shear force bars according to section A.2.2

Table C.		of the yield strengths	for tension	loads					
Calcula	ation method	f _{yd} [N/mm²]							
Simplifi	ed calculation			· [)=	≥ 500 N/mm² ng to Fig. A.:		A.28		
Detaile	d calculation		reinforcing	· []=	≥ 700 N/mm² Fig. A.23, Fig		Fig. A.31		
with: σ _B AF	Linear interpolation Distance factor see $c_d = min \begin{cases} clear e \\ half clear \end{cases}$	in N/mm ² according may be used for inter Fig. C.1, as a functio dge distance c_x centre distance $\frac{c_s}{2}$	rmediate val n of c₀	ues.			and Ø _{BR}		
	Shear force bar o	liameter [mm]	6	8	10	12	14		
	c _d [mm]		15	20	25	30	35		
$ \begin{array}{c c} & \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline & & \\ \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$									
schöck	Isokorb [®] with cor	npression elemen	ts made o	f concrete	or steel				
	ance parameters iring capacity						Annex C1		

Z195369.24

Page 39 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

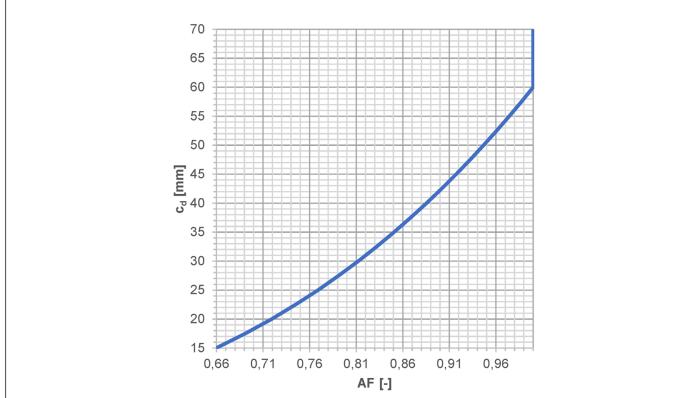


Fig. C.1: Distance factor AF as a function of c_d

Table C.4:	Base tension stress σ_B [N/mm ²] for shear force bars Ø 6 mm depending on α und $Ø_{BR}$
------------	--

	σΒ											Øв	_R [m	m]										
[N/	mm²]	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	220	240	260	280	300
	30	505	528	546	561	574	586	596	605	614	622	630	637	643	650	656	661	667	672	682	690	699	707	714
	32	510	533	551	566	580	591	602	611	620	628	636	643	650	656	662	668	673	678	688	697	706	713	721
	34	515	538	556	571	585	597	607	617	626	634	642	649	656	662	668	674	679	685	694	704	712	720	727
	35	517	540	558	574	587	599	610	620	629	637	645	652	659	665	671	677	682	688	697	707	715	723	731
	36	519	542	561	576	590	602	613	622	631	640	647	654	661	668	674	680	685	690	700	710	718	726	734
	38	524	547	565	581	595	607	618	627	636	645	653	660	667	673	679	685	691	696	706	715	724	732	740
	40	528	551	570	586	599	611	622	632	641	650	658	665	672	678	685	690	696	701	712	721	730	738	745
	42	532	555	574	590	604	616	627	637	646	654	662	670	677	683	690	696	701	707	717	726	735	743	751
α [°]	44	535	559	578	594	608	620	631	641	651	659	667	674	682	688	694	700	706	712	722	731	740	748	756
L]	45	537	561	580	596	610	622	633	643	653	661	669	677	684	690	697	703	708	714	724	734	743	751	759
	46	539	563	582	598	612	624	635	646	655	663	671	679	686	693	699	705	711	716	727	736	745	753	761
	48	542	566	586	602	616	628	640	650	659	668	676	683	690	697	704	710	715	721	731	741	750	758	766
	50	546	570	589	605	620	632	643	654	663	672	680	688	695	701	708	714	720	725	736	745	754	763	771
	55	554	578	598	614	629	641	653	663	673	682	690	697	705	712	718	724	730	736	746	756	765	774	782
	60	561	586	605	622	637	650	661	672	682	690	699	707	714	721	727	734	740	745	756	766	775	784	792
	65	568	593	613	630	645	658	669	680	690	699	707	715	723	730	736	743	749	754	765	775	785	793	802
	70	574	599	620	637	652	665	677	688	697	707	715	723	731	738	745	751	757	763	774	784	793	802	811

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

	σΒ											Øв	_R [m	m]										
	mm²]	30	40	50	60	70	80	90	100	110	120				160	170	180	190	200	220	240	260	280	30
	30	491	513	531	545	558	569	580	589	597	605	612	619	626	632	638	643	648	653	663	671	679	687	69
	32	496	518	536	551	564	575	585	594	603	611	618	625	632	638	644	649	655	660	669	678	686	694	70
	34	501	523	541	556	569	580	591	600	609	617	624	631	638	644	650	655	661	666	675	684	692	700	70
	35	503	525	543	558	571	583	593	603	611	619	627	634	640	647	652	658	663	669	678	687	695	703	71
	36	505	527	545	560	574	585	596	605	614	622	629	636	643	649	655	661	666	671	681	690	698	706	71
	38	509	532	550	565	578	590	600	610	619	627	634	642	648	655	661	666	672	677	687	696	704	712	7'
	40	513	536	554	569	583	594	605	615	624	632	639	647	653	660	666	671	677	682	692	701	709	717	72
	42	517	540	558	574	587	599	610	619	628	636	644	651	658	664	671	676	682	687	697	706	715	723	73
α [°]	44	521	543	562	578	591	603	614	624	633	641	649	656	663	669	675	681	687	692	702	711	720	728	73
. 1	45	522	545	564	580	593	605	616	626	635	643	651	658	665	671	678	683	689	694	704	713	722	730	73
	46	524	547	566	581	595	607	618	628	637	645	653	660	667	674	680	686	691	697	707	716	724	733	74
	48	527	551	569	585	599	611	622	632	641	649	657	664	671	678	684	690	696	701	711	720	729	737	74
	50	531	554	573	589	603	615	626	636	645	653	661	669	676	682	688	694	700	705	715	725	734	742	7!
	55	538	562	581	597	611	624	635	645	654	663	671	678	685	692	698	704	710	715	726	735	744	752	70
	60	545	569	589	605	619	632	643	653	663	671	679	687	694	701	707	713	719	725	735	745	754	762	77
	65	552	576	596	612	627	639	651	661	671	679	688	695	703	709	716	722	728	734	744	754	763	772	78
											007	005				704	700	700				770	700	
ak	70 ble C.					634 stre	647 ss σ					r forc	ce ba	ars Ø								112	780	78
	ole C. σ в	6:							mm² <u>;</u>	for :	shea	r forc Ø _в	ce ba _R [m	ars Ø m]	8 m	m de	pend	ding	on α	und	Øbr		1	I
	ole C.	6: 32	Bas 40	e ter 50	nsion 60	stre	ss σι 80	₃ [N/ 90	mm² <u>;</u>	for : 110	shea 120	r forc Ø _в 130	ce ba _R [m 140	ars Ø m] 150	8 m 160	m de 170	peno 180	ding 190	on α 200	und 220	Ø _{BR}	260	280	3(
	ole C. σ в	6: 32 461	Bas 40 477	e ter 50 493	nsion 60 507	stre 70 519	ss σι 80 529	∃ [N/ 90 539	mm² <u>.</u> 100 547	for : 110 555	shea 120 563	r forc Ø _в 130 569	ce ba _R [m 140 576	ars Ø m] 150 582	8 m 160 587	m de 170 593	penc 180 598	ding 190 603	on α 200 607	und 220 616	Ø _{BR} 240 624	260 632	280 639	3 (
	ole C. σ _в mm²]	6: 32 461	Bas 40 477	e ter 50 493	nsion 60 507	stre 70 519	ss σι 80	∃ [N/ 90 539	mm² <u>.</u> 100 547	for : 110 555	shea 120 563	r forc Ø _в 130 569	ce ba _R [m 140 576	ars Ø m] 150 582	8 m 160 587	m de 170 593	penc 180 598	ding 190 603	on α 200 607	und 220 616	Ø _{BR} 240 624	260 632	280 639	3(64
	ole C. σ _B mm²] 30	6: 32 461 466	Bas 40 477 482	50 493	60 507	stre 70 519 524	ss σι 80 529	∃ [N/ 90 539 544	mm² <u></u> 100 547 553	for s 110 555 561	shea 120 563 568	r forc Ø _B 130 569 575	ce ba <mark>_R [m</mark> 140 576 581	ars Ø m] 150 582 587	8 m 160 587 593	m de 170 593 599	180 598 604	ding 190 603 609	on α 200 607 613	und 220 616 622	Ø _{BR} 240 624 630	260 632 638	280 639 645	3 (64
	ole C. σ _B mm²] 30 32	6: 32 461 466 470	Bas 40 477 482 486	e ter 50 493 498 503	60 507 512 517	stre 70 519 524 529	ss σ _f 80 529 535	■ [N/ 90 539 544 549	mm² <u>-</u> 100 547 553 558	for s 110 555 561 566	shea 120 563 568 573	r forc Ø _B 130 569 575 580	ce ba <mark>_R [m</mark> 140 576 581 587	ars Ø m] 150 582 587 593	8 m 160 587 593 599	m de 170 593 599 604	180 598 604 609	190 603 609 614	on α 200 607 613 619	und 220 616 622 628	Ø _{BR} 240 624 630 636	260 632 638 644	280 639 645 651	3(64 64
	ole C. σ _B mm²] 30 32 34 35 36	6: 32 461 466 470 472 474	Bas 40 477 482 486 488 490	50 493 498 503 505 507	60 507 512 517 519 521	70 519 524 529 531 533	80 529 535 540 542 544	90 539 544 549 552 554	mm ² 100 547 553 558 560 563	for s 110 555 561 566 568 571	shea 120 563 568 573 576 578	r forc Ø _B 130 569 575 580 583 583	ce ba R [m 140 576 581 587 589 592	ars Ø m] 150 582 587 593 595 598	8 m 160 587 593 599 601 604	m de 170 593 599 604 607 609	180 598 604 609 612 615	190 603 609 614 617 620	on α 200 607 613 619 622 624	und 616 622 628 631 633	Ø _{BR} 240 624 630 636 639 642	260 632 638 644 647 649	280 639 645 651 654 657	3(64 64 66
	ole C. σ _B mm²] 30 32 34 35	6: 32 461 466 470 472 474 478	Bas 40 477 482 486 488 490 494	50 493 498 503 505 507 511	60 507 512 517 519 521 525	70 519 524 529 531 533 538	80 529 535 540 542 544 549	90 539 544 549 552 554 558	mm ² 547 553 558 560 563 567	for s 555 561 566 568 571 575	shea 563 568 573 576 578 583	r forc Ø _B 130 569 575 580 583 583 585 590	ce ba R [m 140 576 581 587 589 592 597	m] 150 582 587 593 595 598 603	8 m 587 593 599 601 604 609	m de 593 599 604 607 609 614	180 598 604 609 612 615 620	190 603 609 614 617 620 625	on α 607 613 619 622 624 629	und 616 622 628 631 633 638	Ø _{вк} 624 630 636 639 642 647	260 632 638 644 647 649 655	280 639 645 651 654 657 662	3(64 64 64 66 66
	ole C. σ _B mm ²] 30 32 34 35 36 38 40	6: 32 461 466 470 472 474 478 482	Bas 40 477 482 486 488 490 494 498	50 493 498 503 505 507 511 515	60 507 512 517 519 521 525 529	70 519 524 529 531 533 538 542	80 529 535 540 542 544 549 553	■ [N/ 90 539 544 549 552 554 558 563	100 547 553 558 560 563 567 572	for s 110 555 561 566 568 571 575 580	shea 563 568 573 576 578 583 583	r forc Ø _B 130 569 575 580 583 585 590 595	ce ba R [m 576 581 587 589 592 597 601	ars Ø m] 582 587 593 595 598 603 607	8 m 160 587 593 599 601 604 609 613	m de 170 593 599 604 607 609 614 619	180 598 604 609 612 615 620 624	190 603 609 614 617 620 625 629	on α 200 607 613 619 622 624 629 634	und 616 622 628 631 633 638 643	Ø _{BR} 240 624 630 636 639 642 647 652	260 632 638 644 647 649 655 660	280 639 645 651 654 657 662 667	3(64 64 64 64 66 66 66
[N /	ole C. σ _B mm ²] 30 32 34 35 36 38 40	6: 32 461 466 470 472 474 478 482	Bas 40 477 482 486 488 490 494 498	50 493 498 503 505 507 511 515	60 507 512 517 519 521 525 529	70 519 524 529 531 533 538 542	80 529 535 540 542 544 549	■ [N/ 90 539 544 549 552 554 558 563	100 547 553 558 560 563 567 572	for s 110 555 561 566 568 571 575 580	shea 563 568 573 576 578 583 583	r forc Ø _B 130 569 575 580 583 585 590 595	ce ba R [m 576 581 587 589 592 597 601	ars Ø m] 582 587 593 595 598 603 607	8 m 160 587 593 599 601 604 609 613	m de 170 593 599 604 607 609 614 619	180 598 604 609 612 615 620 624	190 603 609 614 617 620 625 629	on α 200 607 613 619 622 624 629 634	und 616 622 628 631 633 638 643	Ø _{BR} 240 624 630 636 639 642 647 652	260 632 638 644 647 649 655 660	280 639 645 651 654 657 662 667	3 (64 69 69 60 60 60
[N /	ole C. σ _B mm ²] 30 32 34 35 36 38 40 42 44	6: 32 461 466 470 472 474 478 482 485 489	40 477 482 486 488 490 494 498 502 505	50 493 498 503 505 507 511 515 519 523	60 507 512 517 519 521 525 529 533 537	stre 70 519 524 531 533 538 542 546 550	80 529 535 540 542 544 553 557 561	90 539 544 552 554 558 558 563 567 571	100 547 553 558 560 563 567 572 576 580	110 555 561 566 571 575 580 584 588	120 563 568 573 576 578 583 587 592 596	r forc Ø _B 569 575 580 583 585 590 595 599 603	ce ba R [m 576 581 587 589 592 597 601 606 610	m] 150 582 587 593 595 598 603 607 612 616	8 m 160 587 593 599 601 604 609 613 618 622	m de 593 599 604 607 609 614 619 624 628	180 598 604 609 612 615 620 624 629 633	ding 603 609 614 617 620 625 629 634 638	on α 607 613 619 622 624 629 634 639 643	und 616 622 628 631 633 638 643 648 653	ØBR 624 630 636 639 642 647 652 657 661	260 632 638 644 647 649 655 660 665	280 639 645 651 654 657 662 667 672 677	30 64 65 66 66 67 67
[N /	ole C. σ _B mm ²] 30 32 34 35 36 38 40 42 44	6: 32 461 466 470 472 474 478 482 485 489 490	Bas 40 477 482 486 488 490 494 498 502 505 507	50 493 498 503 505 507 511 515 519 523 524	60 507 512 517 521 525 529 533 537 539	70 519 524 531 533 538 542 546 550 552	80 529 535 540 542 544 549 553 557 561 563	90 539 544 552 554 558 563 563 567 571 573	100 547 553 558 560 563 567 572 576 580 582	for s 5555 561 5666 568 571 575 580 584 588 590	120 563 568 573 576 578 583 587 592 596 598	r forc Ø _B 569 575 580 583 585 590 595 599 603 605	re ba 140 576 587 589 592 597 601 606 610 612	m] 150 582 593 595 598 603 607 612 616 618	8 m 587 593 601 604 609 613 618 622 624	m de 593 599 604 607 609 614 619 624 628 630	180 598 604 609 612 615 620 624 629 633 635	190 603 609 614 620 625 629 634 638 641	on α 607 613 619 622 624 629 634 639 643 646	und 616 622 628 631 633 638 643 643 643 655	ØBR 624 630 636 639 642 647 652 657 661 663	260 632 638 644 647 649 655 660 665 669 671	280 639 645 651 654 657 662 667 672 677	30 64 68 68 68 68 68
[N /	ole C. σ _B mm ²] 30 32 34 35 36 38 40 42 44	6: 461 466 470 472 474 478 482 485 489 490 492	40 477 482 486 488 490 494 498 502 505 507 509	50 493 498 503 505 507 511 515 519 523 524 526	60 507 512 517 519 521 525 529 533 537 539 541	70 519 524 531 533 538 542 546 550 552 552	80 529 535 540 542 544 553 557 561 563 565	90 539 544 552 554 558 563 567 571 573 575	100 547 553 558 560 563 567 572 576 580 582 584	for 3 5555 561 5666 571 575 580 584 588 590 592	120 563 568 573 576 578 583 587 592 596 598 600	r forc Ø _B 569 575 580 583 585 599 603 605 607	re ba [m 140 576 581 587 589 592 597 601 606 610 612 614	m] 150 582 587 593 595 598 603 607 612 616 618 620	8 m 587 593 599 601 604 609 613 618 622 624 626	m de 593 599 604 607 609 614 629 624 628 630 632	pend 598 604 609 612 615 620 624 629 633 635 638	190 603 609 614 617 620 624 634 638 641 643	on α 607 613 619 622 624 639 634 639 643 646	und 616 622 628 631 633 643 643 643 653 655	ØBR 624 630 636 639 642 657 652 657 661 663 666	260 632 638 644 647 649 655 660 665 669 671 674	280 639 645 651 654 657 662 667 672 677 679 681	30 64 65 66 66 67 67 68 68 68
α	ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44 45	6: 32 461 466 470 472 474 478 482 485 489 490 492 495	Bas 40 477 482 486 488 490 494 498 502 505 507 509 512	50 493 498 503 505 507 511 515 519 523 524 526 529	60 507 512 517 521 525 529 533 537 539 541 544	70 519 524 533 533 538 542 546 550 552 553 557	80 529 535 540 542 544 553 557 561 563 565 568	■ [N/ 90 539 544 552 554 553 563 563 567 571 573 575 578	100 547 553 558 560 563 567 572 576 580 582 584 587	for s 555 561 566 571 575 580 584 588 590 592 596	120 563 568 573 576 578 583 587 592 596 598 600 604	r forc Ø _B 569 575 580 583 585 590 595 599 603 605 607 611	ce ba R [m 576 587 589 592 597 601 606 610 612 614 618	m] 150 582 593 595 598 603 607 612 616 618 620 624	8 m 587 593 601 604 609 613 618 622 624 626 630	m de 593 599 604 607 609 614 628 630 632 636	180 598 604 609 612 615 620 624 629 633 635 638 642	ding 603 609 614 620 625 629 634 638 641 643 647	on α 607 613 619 622 624 629 634 639 643 646 648 652	und 616 622 628 631 633 643 643 643 653 655 655 657	Ø _{BR} 624 630 636 639 642 647 652 657 661 663 666 670	260 632 638 644 647 649 655 660 665 669 671 674 678	280 639 645 651 654 657 662 667 672 677 679 681 681	30 64 65 66 66 67 67 67 67 67 67 67 67 67 67 67
α	ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44 45 46	6: 461 466 470 472 474 478 482 485 489 490 492 495 498	Bas 40 477 482 486 488 490 494 498 502 505 507 509 512 515	50 493 498 503 505 507 511 515 523 524 526 529 533	60 507 512 517 521 521 525 529 533 537 539 541 544 544	70 519 524 533 533 533 533 542 550 552 552 553 557 560	80 529 535 540 542 544 549 553 557 561 563 565 568 572	 ■ [N/ 90 539 544 549 552 554 558 563 567 571 573 575 578 582 	mm² 547 553 558 560 563 567 572 576 580 582 582 584 587 591	for s 555 561 566 571 575 580 584 588 590 592 596 600	120 563 568 573 576 578 583 587 592 596 598 600 604 607	r forc Ø _B 569 575 580 585 590 595 599 603 605 607 611 615	re ba 140 576 581 587 589 592 597 601 606 610 612 614 618 622	ars Ø m] 150 582 593 595 598 603 607 612 616 618 620 624 628	8 m 587 593 599 601 604 609 613 618 622 624 626 630 634	m de 593 599 604 607 609 614 628 630 632 636 636 640	pend 598 604 609 612 615 620 624 633 635 638 642 646	ding 603 609 614 620 625 629 634 638 641 643 647 651	on α 607 613 619 622 624 629 634 639 643 643 646 648 652 656	und 616 622 628 631 633 633 643 653 655 655 657 661 665	ØBR 624 630 636 639 642 652 657 661 663 666 670 674	260 632 638 644 647 649 655 660 665 669 671 674 678 678	280 639 645 651 654 657 662 667 672 677 679 681 686 690	30 64 68 68 68 68 68 68 68 68 68
[N /	ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44 45 46 48	6: 461 466 470 472 474 478 482 485 489 490 492 495 498	Bas 40 477 482 486 488 490 494 498 502 505 507 509 512 515	50 493 498 503 505 507 511 515 523 524 526 529 533	60 507 512 517 521 521 525 529 533 537 539 541 544 544	70 519 524 533 533 533 533 542 550 552 553 557 560	80 529 535 540 542 544 553 557 561 563 565 568	 ■ [N/ 90 539 544 549 552 554 558 563 567 571 573 575 578 582 	mm² 547 553 558 560 563 567 572 576 580 582 582 584 587 591	for s 555 561 566 571 575 580 584 588 590 592 596 600	120 563 568 573 576 578 583 587 592 596 598 600 604 607	r forc Ø _B 569 575 580 585 590 595 599 603 605 607 611 615	re ba 140 576 581 587 589 592 597 601 606 610 612 614 618 622	ars Ø m] 150 582 593 595 598 603 607 612 616 618 620 624 628	8 m 587 593 599 601 604 609 613 618 622 624 626 630 634	m de 593 599 604 607 609 614 628 630 632 636 636 640	pend 598 604 609 612 615 620 624 633 635 638 642 646	ding 603 609 614 620 625 629 634 638 641 643 647 651	on α 607 613 619 622 624 629 634 639 643 643 646 648 652 656	und 616 622 628 631 633 633 643 653 655 655 657 661 665	ØBR 624 630 636 639 642 652 657 661 663 666 670 674	260 632 638 644 647 649 655 660 665 669 671 674 678 678	280 639 645 651 654 657 662 667 672 677 679 681 686 690	30 64 65 66 66 67 67 67 67 67 67 67 67 67 67 67
[N /	ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44 45 46 48 50	6: 32 461 466 470 472 474 478 485 489 490 492 495 498 505	Bas 40 477 482 486 488 490 494 498 502 505 507 509 512 515 523	50 493 498 503 505 507 511 515 519 523 524 526 529 533 540	60 507 512 517 521 525 529 533 537 539 541 544 544 547	stre 519 524 533 533 542 546 550 552 553 557 560 568	80 529 535 540 542 544 549 553 557 561 563 565 568 572	■ [N/ 90 539 544 552 554 553 563 567 571 573 575 578 582 590	100 547 553 558 560 563 567 572 576 580 582 584 587 591 600	for s 555 561 566 571 575 580 584 588 590 592 596 600 608	120 563 568 573 576 578 583 587 592 596 598 600 604 607 616	r forc Ø _B 569 575 580 585 590 595 599 603 605 607 611 615 624	ce ba R [m 576 581 587 592 592 597 601 606 610 612 614 618 622 631	m] 150 582 593 595 598 603 607 612 616 618 620 624 628 637	8 m 587 593 601 604 609 613 618 622 624 626 630 634 643	m de 593 599 604 609 614 628 630 632 636 632 636 640 649	180 598 604 609 612 615 620 624 629 633 635 638 642 646 655	ding 603 609 614 620 625 629 634 638 641 643 643 647 651 660	on α 607 613 619 622 624 629 634 639 643 646 648 652 656 665	und 616 622 628 633 633 643 643 653 655 655 657 661 665 675	ØBR 624 630 636 639 642 652 657 661 663 666 670 674 684	260 632 638 644 647 655 660 665 669 671 674 678 682 692	280 639 645 651 654 667 672 677 679 681 686 690 700	30 64 65 66 66 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 70
α	ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44 45 46 48 50 55	6: 461 466 470 472 474 478 482 485 489 490 492 495 495 505 512	Bas 40 477 482 486 488 490 494 498 502 505 507 509 512 515 523 529	50 493 498 503 505 507 511 515 523 524 526 529 533 540 547	60 507 512 517 521 521 525 529 533 537 539 541 544 547 555 563	stre 519 524 529 531 533 538 542 550 552 552 553 557 560 568 576	80 529 535 540 542 544 553 557 561 563 565 568 572 580	 ■ [N/ 90 539 544 549 552 554 553 563 567 571 573 575 578 582 590 598 	mm² 547 553 558 560 563 563 567 572 572 572 582 582 582 584 587 591 600 607	for s 555 561 566 571 575 580 588 590 592 596 600 608 616	120 563 568 573 576 578 578 597 592 596 598 600 604 607 616 624	r forc Ø _B 569 575 580 583 585 590 603 605 607 611 615 624 632	■ base of the second secon	ars Ø m] 150 582 593 595 598 603 607 612 616 618 620 624 628 637 646	8 m 587 593 601 604 609 613 613 622 624 626 630 634 643 652	m de 593 599 604 607 609 614 628 630 632 636 630 632 636 640 649	pend 598 604 609 612 615 620 624 633 635 638 642 646 655 663	ding 603 609 614 620 625 629 634 638 641 643 647 651 660 669	on α 607 613 619 622 624 629 634 639 643 643 646 648 652 656 665 674	und 616 622 628 631 633 633 643 643 655 655 655 661 665 675 684	ØBR 624 630 636 639 642 647 652 661 663 666 670 674 684 684	260 632 638 644 647 649 655 660 675 669 671 674 678 682 692 701	280 639 645 651 654 657 662 667 672 677 679 681 686 690 700	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7

Schöck Isokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

	σ _B											Ørd I	[mm]	1				-					
	ов mm²]	40	50	60	70	80	90	100	110	120					170	180	190	200	220	240	260	280	300
			456																				-
	32		461																			<u> </u>	60
	34		465		<u> </u>																	<u> </u>	
			467																				
			469																				
			473																				
			476																			<u> </u>	
	42	464	480	493	505	515	524	533	540	547	554	560	566	571	577	582	586	591	599	607	615	622	62
α [°]	44	467	483	497	508	519	528	536	544	551	558	564	570	575	581	586	590	595	604	612	619	626	63
. 1	45	469	485	498	510	520	530	538	546	553	560	566	572	577	583	588	592	597	606	614	621	628	63
	46	471	487	500	512	522	531	540	548	555	562	568	574	579	585	590	594	599	608	616	623	630	63
	48	474	490	503	515	525	535	543	551	558	565	571	577	583	588	593	598	603	612	620	627	634	64
	50	476	493	506	518	529	538	547	555	562	569	575	581	587	592	597	602	607	615	623	631	638	64
	55	483	500	514	526	536	546	555	563	570	577	583	589	595	600	606	611	615	624	632	640	647	65
	60	490	506	520	533	543	553	562	570	577	584	591	597	603	608	614	619	623	632	641	648	656	66
		106	E 4 0																				
	65	490	512	527	539	550	560	569	577	584	591	598	604	610	616	621	626	631	640	648	656	664	67
			512 518																			L	
	70 ole C.: σ _B	501 8:	518	533	545		566	575 ₃ [N/ı	583 mm²]	591 for s	598 shea	605 r forc Ø _{BR}	611 ce ba	617 Irs Ø	623 12 r	628 nm d	633 Ieper	638 nding	647) on (656 α und	664 d Øв	671 २	67
	70 ole C. σ _B mm²]	501 8: 48	518 Bas 50	533 e ter 60	545 nsion 70	556 stre 80	566 ss σ 90	575 ₃ [N/ı 100	583 mm²] 110	591 for s 120	598 shea 130	605 r forc Ø _{BR} 140	611 ce ba [mm] 150	617 Irs Ø 160	623 12 r 170	628 nm d 180	633 eper 190	638 nding 200	647 on 0	656 α und 240	664 d Øв 260	671 ²⁸⁰	673 30
	70 ole C. σ _B mm²]	501 8: 48	518 Bas	533 e ter 60	545 nsion 70	556 stre 80	566 ss σ 90	575 ₃ [N/ı 100	583 mm²] 110	591 for s 120	598 shea 130	605 r forc Ø _{BR} 140	611 ce ba [mm] 150	617 Irs Ø 160	623 12 r 170	628 nm d 180	633 eper 190	638 nding 200	647 on 0	656 α und 240	664 d Øв 260	671 ²⁸⁰	67 30
	70 ole C.: σ _B mm²] 30	501 8: 48 426	518 Bas 50	533 e ter 60 440	545 nsion 70 450	556 stre 80 459	566 ss σ _f 90 468	575 ₃ [N/r 100 475	583 mm²] 110 482	591 for s 120 488	598 shea 130 494	605 r forc Ø _{BR} 140 500	611 ce ba [mm] 150 505	617 Irs Ø 160 510	623 12 r 170 514	628 nm d 180 519	633 eper 190 523	638 nding 200 527	647 on 0 220 535	656 α und 240 542	664 d Øв 260 548	671 280 554	67 30 56
	70 $\sigma_{\rm B}$ $mm^2]$ 30 32	501 8: 48 426 430	518 Bas 50 428	533 e ter 60 440 444	545 nsion 70 450 455	556 stre 80 459 464	566 ss σ _f 90 468 472	575 ₃ [N/r 100 475 480	583 mm²] 110 482 487	591 for s 120 488 493	598 shea 130 494 499	605 r forc Ø _{вк} 140 500 505	611 ce ba [mm] 150 505 510	617 Irs Ø 160 510 515	623 12 r 170 514 519	628 nm d 180 519 524	633 leper 190 523 528	638 nding 200 527 532	647 on 0 220 535 540	656 α und 240 542 547	664 d ØBI 260 548 554	671 280 554 560	67 30 56 56
	70 $\sigma_{\rm B}$ $mm^2]$ 30 32	501 8: 48 426 430 434	518 Bas 50 428 432	533 e ter 60 440 444 448	545 nsion 450 455 459	556 stre 80 459 464 468	566 ss σ ₁ 90 468 472 476	575 ₃ [N/r 100 475 480 484	583 mm²] 110 482 487 491	591 for s 120 488 493 497	598 shea 130 494 499 503	605 r forc Ø _{вк} 140 500 505 509	611 xe ba imm 505 510 514	617 Irs Ø 160 510 515 519	623 12 r 170 514 519 524	628 nm d 519 524 529	633 eper 190 523 528 533	638 nding 200 527 532 537	647 on 0 535 540 545	656 α und 542 547 552	664 d Ø _B 260 548 554 559	671 280 554 560 565	67 30 56 56 57
	70 ole C. σ _B mm²] 30 32 34 35	501 8: 48 426 430 434 435	518 Bas 50 428 432 436	533 e ter 60 440 444 448 450	545 nsion 450 455 459 461	556 stre 80 459 464 468 470	566 ss σ 90 468 472 476 479	575 ₃ [N/r 100 475 480 484 486	583 mm²] 110 482 487 491 493	591 for s 120 488 493 497 500	598 shea 130 494 499 503 506	605 r forc Ø _{BR} 140 500 505 509 511	611 ce ba [mm] 505 510 514 517	617 Ins Ø 160 510 515 519 522	623 12 r 170 514 519 524 526	628 nm d 519 524 529 531	633 eper 190 523 528 533 535	638 nding 527 532 537 539	647 on 0 535 540 545 547	656 α und 542 547 552 554	664 260 548 554 559 561	671 280 554 565 565 567	677 30 566 577 577
	70 ole C. σ _B mm²] 30 32 34 35 36	501 8: 48 426 430 434 435 437	518 Bas 50 428 432 436 438	533 e ter 60 440 444 448 450 452	545 nsion 450 455 459 461 463	556 stre 80 459 464 468 470 472	566 ss of 90 468 472 476 479 481	575 ₃ [N/r 100 475 480 484 486 488	583 mm²] 110 482 487 491 493 495	591 for s 120 488 493 497 500 502	598 shea 130 494 499 503 506 508	605 r forc Ø _{BR} 140 500 505 509 511 513	611 (mm) 505 510 514 517 519	617 Inrs Ø 160 510 515 519 522 524	623 12 r 170 514 519 524 526 529	628 nm d 519 524 529 531 533	633 eper 523 528 533 535 538	638 nding 200 527 532 537 539 542	647 on 0 535 540 545 547 550	656 α und 542 547 552 554 557	664 260 548 554 559 561 563	671 280 554 560 565 567 570	677 30 566 577 577
	70 ole C.3 σ _B mm²] 30 32 34 35 36 38	501 8: 426 430 434 435 437 441	518 Bas 50 428 432 436 438 440	533 e ter 60 440 444 448 450 452 456	545 nsion 450 455 459 461 463 467	556 stre 459 464 468 470 472 476	566 ss or 468 472 476 479 481 484	575 3 [N/r 100 475 480 484 486 488 492	583 mm²] 110 482 487 491 493 495 499	591 for s 120 488 493 497 500 502 506	598 shea 130 494 499 503 506 508 512	605 r forc Ø _{BR} 140 500 505 509 511 513 518	611 (mm) 505 510 514 517 519 523	617 Inrs Ø 160 510 515 519 522 524 528	623 12 r 170 514 519 524 526 529 533	628 nm d 519 524 529 531 533 538	633 eper 523 528 533 535 538 542	638 nding 527 532 537 539 542 546	647 on 0 535 540 545 547 550 554	656 α und 542 547 552 554 557 561	664 260 548 554 559 561 563 568	671 280 554 560 565 567 570 574	67 30 56 57 57 57 58
N/	70 ole C. σ _B mm ²] 30 32 34 35 36 38 40	501 8: 426 430 434 435 437 441	518 Bas 428 432 436 438 440 444	533 e ter 440 444 448 450 452 456 459	545 nsion 450 455 459 461 463 467 470	556 stre 459 464 468 470 472 476 480	566 ss or 468 472 476 479 481 484 488	575 100 475 480 484 486 488 492 496	583 mm²] 110 482 487 491 493 495 499 503	591 for s 488 493 497 500 502 502 506 510	598 shea 130 494 499 503 506 508 512 516	605 r forcc Ø _{BR} 140 500 505 509 511 513 513 518 522	611 ce ba imm 505 510 514 517 519 523 527	617 Irs Ø 160 510 515 522 524 528 532	623 12 r 514 524 526 529 533 537	628 nm d 519 524 529 531 533 538 542	633 leper 523 528 533 535 538 538 542 546	638 nding 527 532 537 539 542 546 550	647 220 535 540 545 547 550 554 558	656 α und 542 552 554 557 555 554 557	664 260 548 554 559 561 563 568 572	e71 280 554 565 565 567 570 574 579	67 30 56 57 57 57 58 58
Ν /	70 ole C.3 σ _B mm²] 30 32 34 35 36 38 40 42	501 8: 426 430 434 435 437 441 444	518 Bass 50 428 432 436 438 440 444	533 e ter 60 440 444 448 450 452 456 459 463	545 nsion 450 455 459 461 463 467 470 474	5556 stre 80 459 464 468 470 472 476 480 483	566 ss or 468 472 476 477 481 484 488 492	575 100 475 480 484 488 488 492 496 500	583 mm²] 110 482 487 491 493 495 503 507	591 for s 120 488 493 497 500 502 506 510 513	598 shea 130 494 499 503 506 508 512 516 520	605 r forc Ø _{BR} 140 500 505 509 511 513 518 522 526	611 ce ba imm 505 510 514 517 519 523 527 531	617 rrs Ø 160 510 515 519 522 524 528 532 536	623 12 r 514 519 524 529 533 537 541	628 nm d 519 524 529 531 533 538 542 546	633 eper 523 528 533 535 538 542 546 550	638 nding 527 532 537 539 542 546 550 554	647 220 535 540 545 547 550 554 558 562	656 a una 542 547 552 554 557 561 566 570	664 2 Ø _B 1 548 554 559 561 563 568 572 577	671 280 554 565 565 567 570 574 579 583	67 30 56 57 57 57 57 58 58 58 58
	70 ole C. σ _B mm²] 30 32 34 35 36 38 40 42 44	501 8: 426 430 434 435 437 441 444 448 451	518 Bas 50 428 432 436 438 440 444 447 450	533 e ter 440 444 448 450 452 456 459 463 466	545 nsion 450 455 459 461 463 467 470 474 477	5556 stre 459 464 468 470 472 476 480 483 487	566 ss or 468 472 476 479 481 484 488 492 495	575 100 475 480 484 486 488 492 496 500 503	583 mm²] 110 482 487 491 493 495 503 507 510	591 for s 488 493 497 500 502 506 510 513 517	598 shea 494 503 506 508 512 516 520 523	605 r forc Ø _{BR} 140 500 505 509 511 513 518 522 526 529	611 ce ba 150 505 510 514 517 513 523 527 531 535	617 rrs Ø 160 515 519 522 524 528 532 536 540	623 12 r 514 524 526 529 533 537 541 545	628 nm d 519 524 529 531 533 538 542 546 550	633 eper 523 535 535 538 542 546 550 554	638 nding 527 532 537 539 542 546 550 554 558	647 220 535 540 545 547 550 554 558 562 566	656 α und 542 557 554 557 561 566 570 574	664 260 548 554 559 561 563 568 572 577 581	671 280 554 560 565 567 570 574 579 583 587	677 300 566 577 577 577 577 578 588 588 588 599

454 456 469 480 490 499 507 514 521 527 533 538 544 548 553 558 562 570 578 585 591 597

457 459 472 483 493 502 510 517 524 530 536 542 547 552 557 561 566 574 581 588 595 601

459 462 475 486 496 505 513 520 527 533 539 545 550 555 560 565 569 577 585 592 599 605 466 469 482 493 503 512 520 528 535 541 547 553 558 563 568 573 577 586 593 600 607

478 481 494 506 516 525 533 541 548 555 561 567 572 578 583 587 592 600 608 616 623 629

483 486 500 511 522 531 539 547 554 561 567 573 579 584 589 594 599 607 615 623 630 636

542 548 554 560

Schöck Isokorb[®] with compression elements made of concrete or steel

472 475 488 500 510 519 527 535

Performance parameters Load bearing capacity

Annex C4

566 571 576 580 585 593 601 608 615 622

46

48

50

55

60

65

70

613

(σΒ										ØE	_{BR} [m	m]									
[N /I	mm²]	56	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	220	240	260	280	300
	30	413	417	427	435	443	450	457	463	468	473	478	483	487	492	496	499	507	513	519	525	531
	32	417	421	431	440	447	454	461	467	473	478	483	488	492	496	500	504	512	518	525	530	536
	34	420	425	435	444	451	459	465	471	477	482	487	492	497	501	505	509	516	523	529	535	541
	35	422	427	437	445	453	461	467	473	479	484	490	494	499	503	507	511	518	525	532	538	543
	36	424	428	438	447	455	463	469	475	481	487	492	496	501	505	509	513	521	527	534	540	545
	38	428	432	442	451	459	466	473	479	485	490	496	500	505	509	513	517	525	532	538	544	550
	40	431	435	445	454	463	470	477	483	489	494	499	504	509	513	517	521	529	536	542	548	554
	42	434	438	449	458	466	473	480	487	492	498	503	508	513	517	521	525	533	540	546	552	558
α	44	437	442	452	461	469	477	484	490	496	501	507	512	516	521	525	529	537	544	550	556	562
[°]	45	438	443	453	463	471	478	485	492	498	503	508	513	518	522	527	531	538	545	552	558	564
	46	440	445	455	464	472	480	487	493	499	505	510	515	520	524	528	532	540	547	554	560	566
	48	443	447	458	467	475	483	490	496	502	508	513	518	523	527	532	536	544	551	557	564	570
	50	445	450	461	470	478	486	493	499	505	511	516	521	526	531	535	539	547	554	561	567	573
			457																			<u> </u>
			463																			<u> </u>
			468																			<u> </u>
			473																			<u> </u>

C.1.1.3 Tension bars with anchor head according to Fig. A.18 and Fig. A.19 (Type K-O, K-U)

The design value for the tension force per bar results from the concrete strength class and anchorage of the anchor head according to Table C.10. A maximum of ten tension bars with anchor head shall be placed per meter.

T O	- · ·	e			
Table C.10:	I ension capacity	^{<i>i</i>} of tension bars with	n anchor head	depending on the anchorage	•

Concrete strength class	Anchoring of the anchor head	Z _{Rd} [kN]
005/20	According to Fig. A.18 and Fig. A.19, within the hatched area	47,8
C25/30	According to Fig. A.18 and Fig. A.19 outside the hatched area	34,1
000/05	According to Fig. A.18 and Fig. A.19 within the hatched area	43,0
C20/25	According to Fig. A.18 and Fig. A.19 outside the hatched area	30,7

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

C.1.1.4 Shear force bars with anchor head according to Fig. A.25 (Type K-O, K-U)

A maximum of six shear force bars with a nominal diameter of 8 mm with anchor head shall be arranged per meter. The design values per bar are shown in Table C.11.

Table C.11: Design values per shear force bar

Concrete strength class	Z _{V,Rd} [kN]
C25/30	21,8
C20/25	19,6

C.1.1.5 Horizontal bars according to section A.2.3

Table C.12: Design values of the horizontal force parallel to the joint H_{II,d} for horizontal inclined pairs of bars

Number and diameter	Insulation thickness	Incli- nation of the bars	Vertical edge spacing according to Fig. B.26	1.3 ⋅ I _{bd} according to Fig. A.32	Н _{II,d} C20/25	Н _{іі,d} C25/30
[mm]	[mm]	[°]	[mm]	[mm]	[kN]	[kN]
2 Ø 10	80	45	≥ 80	160	±10,3	±12,2
2 Ø 10	120	45	≥ 80	136	±8,8	±10,4
2 Ø 12	80	45	≥ 80	457	±31,4	±39,2
2 Ø 12	120	45	≥ 80	431	±31,4	±39,2

Table C.13:	Design values of horizontal force	perpendicular to joint H	d for horizontal straight bars

Diameter	Insulation thickness	1.0 ⋅ I _{bd} according to Fig. A.33	H _{⊥,d} C20/25	H _{⊥,d} C25/30
[mm]	[mm]	[mm]	[kN]	[kN]
10	80	155	±11,2	±13,3
10	120	135	±9,8	±11,6
12	80	500	±43,5	±49,2
12	120	480	±41,8	±49,2

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

C.1.1.6 Steel compression elements (SCE) according to section A.2.4

Table C.14:	Design values	N _{ki,d} of compressi	on force for stainle	ess steels	
ø	Insulation thickness	Stainless reinforcing steel R _{p0,2} 500	Stainless reinforcing steel R _{p0,2} 700	Stainless steel round bars S460	Stainless steel round bars S690
[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	-	11,0	-	-
6	80	-	10,7	-	-
	120	-	8,2	-	-
	60	-	21,3	-	-
8	80	-	21,7	-	-
	120	-	17,8	-	-
	60	-	35,0	27,4	-
10	80	-	36,3	26,0	-
	120	-	31,5	23,3	-
	60	-	52,1	40,5	-
12	80	-	53,6	38,8	-
	120	-	49,5	35,4	-
14	80	53,4	71,5	54,1	70,7
	120	49,2	67,3	50,1	64,4
16	80	-	-	72,1	100,7
	120	-	-	67,4	95,4
20	80	-	-	115,7	152,4
20	120	-	-	110,0	143,0

Table C.15: Design values N_{Rd,c} of tensile force of steel compression elements acc. to Fig. A.34 and Fig. A.39

		Embedded length h _{ef}	Edge distance c _{o,} c _u top, bottom	Tensile force N _{Rd,c}
		[mm]	[mm]	[kN/SCE]
Concrete strength	C20/25	≥ 50	≥ 75	0,071 · c
class	C25/30	≥ 50	275	0,079 · c

with:

c $min(c_1; c_2; S_n/2; 75)$ in mm

c₁, c₂ Lateral edge distance of steel compression elements SCE, left or right in mm

S_n Minimal centre distance of steel compression elements SCE in mm

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

C.1.2 Load bearing capacity of Concrete Compression Elements (CCE) according to section A.2.5

C.1.2.1 General

The design value of the transmittable compression force D_{Rd} is calculated depending on the compression bearing variant:

 $\mathsf{D}_{\mathsf{Rd}} = \mathsf{min} \begin{cases} \mathsf{n} \cdot \mathsf{D}_{\mathsf{Rd},\mathsf{c}} \\ \mathsf{n} \cdot \mathsf{D}_{\mathsf{Rd},\mathsf{CCE}} \end{cases}$ with: Design value of the transmittable compression force in kN/m D_{Rd} Existing number of compression bearings per meter n

D_{Rd,c} Design value for the concrete edge bearing capacity in kN/bearing pair

Design value of the compression bearing capacity in kN/bearing pair D_{Rd,CCE}

C.1.2.2 HTE Modul

 $D_{Rd,CCE} = 34.4 \text{ kN}$

Table C.16: Design values for the HTE-Modul (alternatively HTE-Compact[®] 30)

Minimum centre distance CCE, compression bearing number/m	Concrete strength class	D _{Rd,c} [kN/bearing pair]
50 mm 11 - 18	C20/25 C25/30 ≥C30/37	25,5 31,8 34,4
55 mm 11 - 16	C20/25 C25/30 ≥C30/37	26,6 33,3 34,4
60 mm 11 - 14	C20/25 C25/30 ≥C30/37	27,8 34,4 34,4
100 mm 4-10	C20/25 C25/30 ≥C30/37	34,4 34,4 34,4

For connection situations as shown in Fig. B.12 and Fig. B.13 the design values according to Table C.16 shall be determined under consideration of ac,uz and ac,z and a maximum of 16 compression bearings shall be used. with:

see Table C.17 **a**c,uz ... see Table C.18

ac,z ...

If the design values exeed a compression force of 350 kN/m, four special stirrups per meter shall be installed evenly on the bearing side in accordance with Fig. A.49 and Fig. A.50 along the length of the connection.

Schöck Isokorb[®] with compression elements made of concrete or steel

Performance parameters Load bearing capacity

Page 46 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

C.1.2.3 H	ITE-Compact [®] 20 or HTE-Compact [®] 30
$D_{Rd,c} = \frac{1}{1000}$	$\left\{ \begin{array}{c} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{a} \\ \mathbf{c} \\$
with:	
a _{cd}	see Table C.19
c ₁	edge distance of the load resultant in mm, according to Annexes D3 and D4
а	centre distance of the compression bearings in mm
f _{ck,cube}	characteristic cube compressive strength in N/mm ² ≤ C30/37
a c,uz	see Table C.17
a c,z	see Table C.18

Table C.17: Factor ac,uz for consideration of the beam width for height offsets

Connection situation	Beam width [mm]	a _{c,uz}
Fig. D 42 and Fig. D 42	175 ≤ b ≤ 240	0,0245 · b ^{2/3}
Fig. B.12 and Fig. B.13	b > 240	0,95
others	-	1,0

Table C.18: Factor ac,z to take into account the inner lever arm

Compression force D _{Rd} [kN/m]	Connection situation	internal lever arm z [mm]	a _{c,z}
	Fig. D 12 and Fig. D 12	$80 \le of \le 150$	1,0
≥ 350	Fig. B.12 and Fig. B.13	z > 150	150/z
	others	-	1,0
< 350	general	-	1,0

Table C.19: Design values for HTE-Compact® 20 and HTE-Compact® 30

	CCE HTE-Compact [®] 20	CC HTE-Com	—
	without special stirrups	without special with speci stirrups stirrups*	
a _{cd}	1,70	1,80	2,23
Minimum centre distance, compression element number/m	100 mm 4 - 10	100 mm 4 - 10	80 mm 9 – 12
D _{Rd,CCE} [kN/bearing pair]	38,0	45,0	45,0

* four special stirrups per meter shall be installed evenly on the bearing side in accordance with Annex A17

If the number of compression bearings is exceeded or the minimum distance between the compression bearings not reached according to Table C.19, the design values for HTE-Compact[®] 30 can be taken from Table C.16.

Schöck Isokorb® with compression elements made of concrete or steel

Performance parameters Load bearing capacity

C.1.3 Design values of the plastic horizontal force parallel to the joint H_{IIpl,d} in the earthquake design case

Table C.20:Design values of the plastic horizontal force parallel to the joint HIIpI,d in the earthquake design case
for stainless steel bars; tension bars according to section A.2.1 and steel compression elements
(SCE) according to section A.2.4

ø	Insul. thick- ness	Stainl. reinf. st. R _{p0,2} 500	Stainl. reinf. st. R _{p0,2} 700	Stainl. reinf. st. R _{p0,2} 800	Stainl. reinf. st. R _{p0,2} 820	Stainl. round st. S460	Stainl. round st. S690
[mm]	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	80	0,19	0,27	0,29	0,30	0,19	0,28
6	120	0,13	0,18	0,20	0,21	0,13	0,19
0.5	80	0,24	0,34	0,37	0,38	0,23	0,35
6,5	120	0,17	0,23	0,25	0,26	0,16	0,24
7	80	0,30	0,42	0,46	0,47	0,29	0,44
7	120	0,21	0,29	0,32	0,32	0,20	0,30
•	80	0,45	0,63	0,68	0,70	0,43	0,65
8	120	0,31	0,43	0,47	0,48	0,30	0,44
0.5	80	0,74	1,03	1,12	1,15	0,71	1,06
9,5	120	0,51	0,71	0,77	0,79	0,49	0,73
10	80	0,85	1,20	1,30	1,33	0,82	1,23
10	120	0,59	0,83	0,90	0,92	0,57	0,85
44	80	1,13	1,58	1,71	1,75	1,08	1,62
11	120	0,78	1,09	1,19	1,22	0,75	1,13
40	80	1,44	2,02	2,20	2,25	1,39	2,08
12	120	1,01	1,41	1,53	1,57	0,97	1,45
14	80	2,25	3,14	3,41	3,50	2,16	3,24
14	120	1,58	2,21	2,40	2,46	1,52	2,27
40	80	-	-	-	-	3,16	4,74
16	120	-	-	-	-	2,23	3,34
20	80	-	-	-	-	5,92	8,88
20	120	-	-	-	-	4,23	6,34

Schöck lsokorb[®] with compression elements made of concrete or steel

Performance parameters

Load bearing capacity in the earthquake design case

Page 48 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

 Table C.21:
 Design values of the plastic horizontal force parallel to the joint H_{IIpl,d} in the earthquake design case for stainless steel bars; shear force bars according to section A.2.2

ø	Insulation thickness (inclination)	Stainl. reinf. st. R _{p0,2} 500	Stainl. reinf. st. R _{p0,2} 700	Stainl. reinf. st. R _{p0,2} 800	Stainl. reinf. st. R _{p0,2} 820
[mm]	[mm]	[kN]	[kN]	[kN]	[kN]
6	80 (a = 45°)	0,14	0,20	0,21	0,22
6	120 (a = 35°)	0,11	0,15	0,17	0,17
C F	80 (a = 45°)	0,18	0,25	0,27	0,28
6,5	120 (a = 35°)	0,14	0,19	0,21	0,22
7	80 (a = 45°)	0,22	0,31	0,33	0,34
	120 (a = 35°)	0,17	0,24	0,26	0,27
8	80 (a = 45°)	0,33	0,46	0,49	0,51
0	120 (a = 35°)	0,25	0,36	0,39	0,40
0.5	80 (a = 45°)	0,54	0,75	0,82	0,84
9,5	120 (a = 35°)	0,42	0,59	0,64	0,66
10	80 (a = 45°)	0,62	0,87	0,95	0,97
10	120 (a = 35°)	0,49	0,69	0,75	0,77
44	80 (a = 45°)	0,82	1,15	1,25	1,29
11	120 (a = 35°)	0,65	0,91	0,99	1,01
12	80 (a = 45°)	1,06	1,49	1,62	1,66
12	120 (a = 35°)	0,84	1,17	1,28	1,31
14	80 (a = 45°)	1,66	2,32	2,52	2,59
14	120 (a = 35°)	1,32	1,84	2,00	2,05

 Table C.22:
 Design values of the plastic horizontal force parallel to the joint H_{Ilpl,d} in the earthquake design case for Concrete Compression Elements (CCE) according to section A.2.5

Concrete	Insulation thickness	H _{IIpl,d}
compression element variants (CCE)	[mm]	[kN]
HTE-Compact [®] 20, HTE-Compact [®] 30, THE-Modul	80	0,015 · D _{Rd} in accordance with C.1.2
	120	0,010 · D _{Rd} in accordance with C.1.2

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters

Load bearing capacity in the earthquake design case

C.2 Fire resistance

C.2.1 Performance features regarding load bearing capacity in case of fire

If the performance characteristics specified in Annexes C1 to C9 for verification according to the intended use under normal temperatures are met, the load bearing capacity of connections with Schöck Isokorb[®] is also guaranteed in case of fire for the fire resistance period indicated in Table C.24. This applies to a reduction coefficient $\eta_{\rm fi}$ according to EN 1992-1-2, section 2.4.2 to $\eta_{\rm fi}$ = 0.7, for design according to Fig. C.2 to Fig. C.7 and subject to the following boundary conditions.

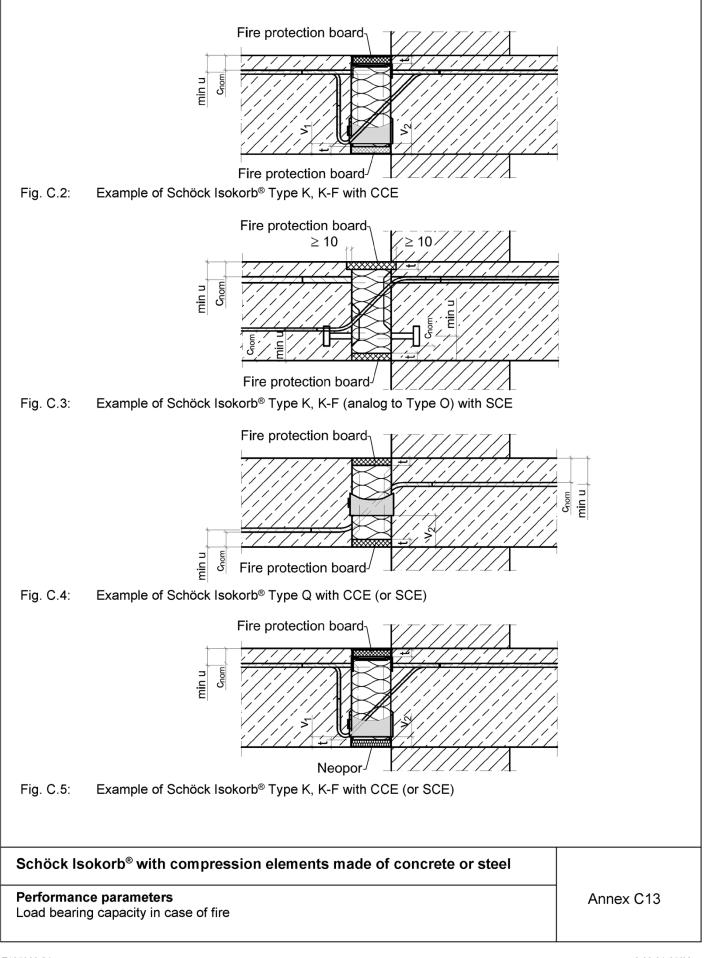
- The connection joint provided with Schöck Isokorb[®] is completely covered on the top or top and bottom with fire protection boards in accordance with section A.3 (see Annexes C13 to C14).
- The fire protection boards in the area of planned tensile loads shall be realized with a lateral overhang of 10 mm in relation to the insulation body for the design variants shown in Fig. C.3 and Fig. C.7.
- The lateral overhang of 10 mm in relation to the insulation body on both lateral surfaces is not necessary for the design variants shown in Fig. C.2, Fig. C.4 to Fig. C.6.
- The required thicknesses t of the fire protection boards, the minimum axis spacing v and the minimum concrete cover c_{nom} of the reinforcing steel shall be taken from Table C.23.

Table C.23:	Minimum dimensions of cnom,	u and v and required thickness o	f fire protection board t in [mm]
-------------	-----------------------------	----------------------------------	-----------------------------------

according to exposure class EN 1992-1-1
35
20/21
according to technical documentation

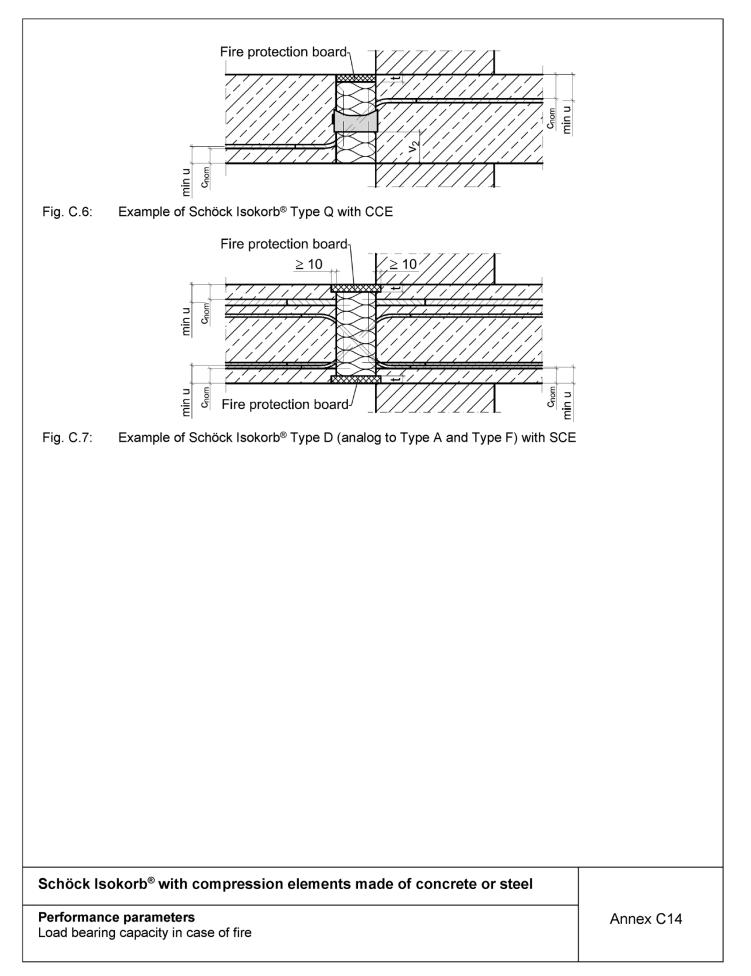
* see Fig. C.2, Fig. C.4 to Fig. C.6

Table C.24:	Fire resistance	period (load	capacity)
		P 00 0. ,		


Design variant in accordance with	Fire resistance period (load bearing capacity) in minutes
Fig. C.2	120
Fig. C.3	120
Fig. C.4	120
Fig. C.5	60
Fig. C.6	60
Fig. C.7	120

Schöck lsokorb[®] with compression elements made of concrete or steel

Performance parameters Load bearing capacity in case of fire


Page 50 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 51 of European Technical Assessment ETA-17/0261 of 2 January 2025

C.2.2 Resistance to fire of building elements (informative)

Floor or roof structures as well as balconies and walkways connected to reinforced concrete components with Schöck Isokorb[®] as per intended use – shown in Annexes C13 to C14 – can be classified in terms of fire resistance in accordance with EN 13501-2 as specified in Table C.25. The following boundary conditions shall be observed:

- The load bearing capacity in case of fire has been declared for Schöck Isokorb[®].
- See Section C.2.1, indent 1 to 4 and Table C.23.
- Connections of the remaining edges of floor and roof structures, which are not connected with Schöck Isokorb[®] to adjacent or supporting components, shall be verified in accordance with the provisions of the Member States for the corresponding fire resistance.

Design variant	Floor or roof construction with fire separating function	Balcony and walkway, parapets
Fig. C.2	REI 120	R 120
Fig. C.3	REI 120	R 120
Fig. C.4	REI 120	R 120
Fig. C.5	REI 60	R 60
Fig. C.6	REI 60	R 60
Fig. C.7	REI 120	R 120

Table C.25: Component classification

Schöck Isokorb® with compression elements made of concrete or steel

Classification of building element (informative) Fire resistance

Page 53 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

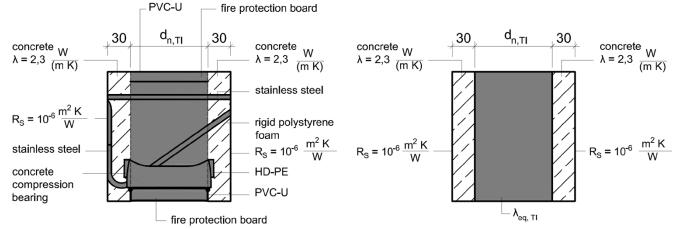
C.3 Thermal resistance

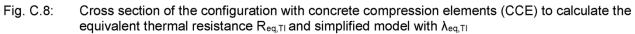
. n

The equivalent thermal resistance Reg,TI of the Schöck Isokorb® determined according to EN ISO 6946 and EN ISO 10211 by using finite element method and a detailed 3D model of the thermal insulation element for the configuration shown in Fig. C.8 (with concrete compression elements (CCE)) respectively Fig. C.9 (with steel compression elements (SCE)):

$$R_{cal} = R_{eq,TI} + R_{con}$$

$$R_{eq,TI} = R_{cal} - R_{con} = R_{cal} - \frac{0.06 \ m}{2.3 \ W / (m * K)}$$


$$\lambda_{mr} = \frac{d_{n,TI}}{2.3 \ W / (m * K)}$$


eq,TI $R_{eq,TI}$

with[.]

л

R _{cal}	calculated thermal resistance for configuration shown in Fig. C.8 or Fig. C.9
R _{eq,TI}	equivalent thermal resistance of thermal insulation element
R _{con}	thermal resistance of concrete block
d n,Ti	nominal thickness of thermal insulation element
$\lambda_{eq,TI}$	equivalent thermal conductivity of thermal insulation element

Schöck Isokorb[®] with compression elements made of concrete or steel

Performance parameters Thermal resistance

Page 54 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

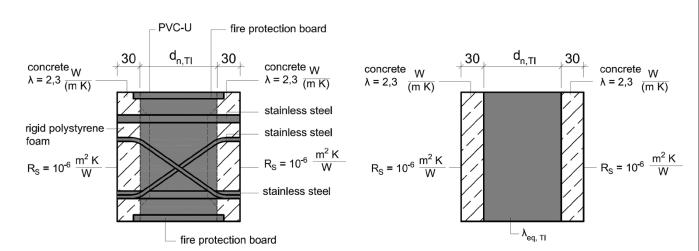


Fig. C.9: Cross section of the configuration with steel compression elements (SCE) to calculate the equivalent thermal resistance $R_{eq,TI}$ and simplified model with $\lambda_{eq,TI}$

The design values of the thermal conductivities of the components are given in Table C.26.

Table C.20. Design values of thermal conductivity	Table C.26:	Design values of thermal conductivity
---	-------------	---------------------------------------

Material	Design thermal conductivity λ [W/(m*K)]	Source of data
High-performance fine-grained concrete	according to technical documentation	EN 12664 and EN ISO 10456
Rigid polystyrene foam (EPS)	0,031	ISO 13163 and EN ISO 10456
Stainless steel	13-15	EN 10088-1
PE-HD	0,5	EN ISO 10456
PVC-U	0,17	EN ISO 10456
Fire protection board	according to technical documentation	ISO 12664 and EN ISO 10456

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters Thermal resistance

C.4 Weighted reduction of impact sound pressure level ΔL_w

The weighted reduction of impact sound pressure level ΔL_w serves as input variable for the computational prediction of the impact sound insulation in the building according to EN ISO 12354-2. The values for ΔL_w according to Table C.27 to Table C.41 apply both to a design with and without fire protection boards.

Table C.27:	Weighted reduction of in	pact sound pressure level ΔL_w	, Schöck Isokorb [®] Type K
-------------	--------------------------	--	--------------------------------------

		EI	ement height H 18	0 mm		
Insula	tion thickness 120 m	m, Eleme	nt length 1000 mm	, concrete	cover of tension ba	rs 35 mm
٦	Tension bars		ear force bars	Compr	ression elements ¹	ΔL_w [dB]
n	Ø2 [mm]	n	Ø [mm]	n	name	
13		10		18		8
8		10		18		8
8		10		11		11
8		8		11		11
4	10	8		11		11
4	10	8	8	5	HTE30	13
4		4		5		15
2		4		5		15
2		4		2		17
2		2		2		18
¹ Concret	te compression elen	nents (CC	E) in accordance	with section	on A.2.5,	

HTE30 = concrete compression element HTE-Compact[®] 30 or HTE-Modul

Table C.28:	Weighted reduction	n of impact sound	pressure level ΔL_w ,	Schöck Isokorb [®] Type K
-------------	--------------------	-------------------	-------------------------------	------------------------------------

	Element height H 180 mm						
Insula	Insulation thickness 120 mm, Element length 1000 mm, concrete cover of tension bars 35 mm						
Tension barsShear force barsCompression elements ¹ ΔL_w [dB							
n	Ø₂ [mm]	n	Ø [mm]	n	name		
7		4		6		17	
4	6,5	4	8	4	HTE20	18	
4		2		4		20	
¹ Concret	¹ Concrete compression elements (CCE) in accordance with section A.2.5,						
HTE20	= concrete compres	sion elen	nent HTE-Compact [®]	[®] 20			

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters

Reduction of impact sound pressure level

Insulat	ion thickness 120 r		ement height H 180 nt length 1000 mm,		cover of tension ba	ars 35 mm
Tension bars Shear force bars (positiv / negativ) Compression elements ¹ ΔL_w [∆L _w [dB]
n	Ø2 [mm]	n	Ø [mm]	n	name	
11		7/4		17		10
8		4/4		13		12
6	10	4/4	0	8		13
4	10	4/1	8	5	HTE30	16
3		4/0		4		16
2		4/0		3		18

Table C.30:	Weighted reduction	of impact sound	pressure level ΔL_w	, Schöck Isokorb® Type	Κ
-------------	--------------------	-----------------	-----------------------------	------------------------	---

		EI	ement height H 18	0 mm		
Insula	tion thickness 80 m	m, Elemer	nt length 1000 mm,	concrete	cover of tension ba	rs 35 mm
Т	ension bars	Sh	ear force bars	Compr	ompression elements ¹ ΔL _w [dE	
n	Ø2 [mm]	n	Ø [mm]	n	name	
12		9		18		6
7	10	8	0	10		7
5	10	5	8	6	HTE30	11
2		4		3		13
¹ Concret	e compression eler			with section	on A.2.5,	

HTE30 = concrete compression element HTE-Compact[®] 30 or HTE-Modul

Table C.31:	Weighted reductio	n of impact sound	l pressure level /	∆L _w , Schöck	Isokorb [®] Type K
-------------	-------------------	-------------------	--------------------	--------------------------	-----------------------------

T	ension bars	She	ar force bars	Comp	ression elements ¹	ΔL_w [dB]
n	Ø₂ [mm]	n	Ø [mm]	n	name	
12		5		8	HTE20	14
7		4		6		15
4	0.5	4	0	4		16
2	6,5	4	8 4 2	2		17
2		2		2		20
2		1		2		24
	e compression elem = concrete compres	•	,		ion A.2.5,	

Performance parameters

Annex C19

Reduction of impact sound pressure level

		Ele	ement height H 220	mm		
Insulati	on thickness 120 m	m, Eleme	nt length 1000 mm,	concrete	cover of tension ba	ars 50 mm
Τe	ension bars	Sh	ear force bars	Comp	ression elements ¹	ΔL_w [dB]
n	Ø₂ [mm]	n	Ø [mm]	n	name	
12		5		8		16
7		4		6		17
4	6,5	4	8	4	HTE20	18
2		4		2		19
2		2		2		21
Concrete	compression elem	ents (CC	E) in accordance v	with secti	on A.2.5,	

Table C.33:	Weighted reduction	of impact sound	pressure level ΔL_w ,	Schöck Isokorb® Type K	Ĺ.
-------------	--------------------	-----------------	-------------------------------	------------------------	----

		EI	ement height H 250	mm		
Insula	tion thickness 120 m	n, Eleme	nt length 1000 mm,	concrete	e cover of tension ba	rs 35 mm
٦	Tension bars	Sh	ear force bars	Comp	ression elements ¹	ΔL_w [dB]
n	Ø₂ [mm]	n	Ø [mm]	n	name	
12		5		8		16
7		4		6		18
4	6,5	4	8	4	HTE20	19
2		4		2		20
2		2		2		21
¹ Concret	e compression elem	ents (CC	E) in accordance w	vith sect	ion A.2.5,	
HTE20	= concrete compress	sion elen	nent HTE-Compact	[®] 20		

Table C.34:	Weighted reduction	of impact sound p	pressure level ΔL_w ,	Schöck Isokorb® Type K
-------------	--------------------	-------------------	-------------------------------	------------------------

	Tension bars	Sh	ear force bars	Comp	ression elements ¹	∆L _w [dB]
n	Ø₂ [mm]	n	Ø [mm]	n	name	
13		9		18		10
12		9 18		10		
9		7		12		11
8		6		11	HTE30	12
6	10	3	8	8		14
6	10	3	0	7		14
5		3		6		15
4		2		5	-	16
3		2		4		16
2		2		3		17
	e compression elem = concrete compress					

Performance parameters

Reduction of impact sound pressure level

Element height H 220 mm Insulation thickness 80 mm, Element length 1000 mm, concrete cover of tension bars 35 mm						
Те	ension bars	Sh	ear force bars	Compre	ssion elements ¹	ΔL_w [df
n	Ø₂ [mm]	n	Ø [mm]	n	name	
13		9		18		
12		8		18		
10		7		16		
9		7		12		
8		6		11		
6	10	3	8	8	HTE30	
6		3		7		
5		3		6		
4		3		5		
3		2		4		
2		2		3		

HTE30 = concrete compression element HTE-Compact® 30 or HTE-Modul

		Ele	ement height H 180) mm		
	Insula	tion thickn	ess 120 mm, Elem	ent length	1000 mm	
Tension bars Shear force bars Compression elements ¹ ΔL_w [dl						ΔL_w [dB]
n	Ø2 [mm]	n	Ø [mm]	n	name	
-		8		6		10
-		5		4		13
-		3	10	4	HTE20	14
-		2		4		15
-		2		1		17
¹ Concrete	compression ele	ments (CC	E) in accordance	with secti	on A.2.5,	
HTE20 =	concrete compre	ssion elem	ent HTE-Compac	:t® 20		

Table C.36: Weighted reduction of impact sound pressure level △L_w, Schöck Isokorb® Type Q

7	Tension bars		ear force bars	Compr	ession elements ¹	ΔL_w [dB]
n	Ø₂ [mm]	n	Ø [mm]	n	name	
-		6				10
-		4	10 4	4		12
-		2	10	4 HTE20	16	
-		1				17
	e compression elem = concrete compress		,		on A.2.5,	
	sokorb [®] with com					

Reduction of impact sound pressure level

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
n \varnothing_2 [mm]n \varnothing [mm]n \varnothing [mm]-410214-210114-21011Steel compression elements (SCE) in accordance with section A.2.4	
4 2 - 2 2 10 1 14 Steel compression elements (SCE) in accordance with section A.2.4	L _w [dB]
Image: steel compression elements (SCE) in accordance with section A.2.4	
- 2 1 Steel compression elements (SCE) in accordance with section A.2.4	12
	14
able C 39. Weighted reduction of impact sound pressure level AL Schöck Isokorb®	
	[vpe ()
	ype Q
Element height H 180 mm	

5							
Insulation thickness 120 mm, Element length 1000 mm							
Те	nsion bars	She	Shear force bars		Compression elements ¹		
n	Ø2 [mm]	N	Ø [mm]	n	name		
-		8		4		14	
-		6	0	4		16	
-		5	6	4	HTE20	16	
-		2		2		20	
Concrete compression elements (CCE) in accordance with section A.2.5,							
HTE20 =	concrete compre	ssion elem	ent HTE-Compact	® 20			

Table (° 40:	Weighted reduction of im	pact sound pressure level ΔL_{v}	Schöck Isokorh® Type ()
Table 0.40.	velgined reduction of in	ΔL_{v}	, SCHOCK ISOKOLD [®] Type Q

Element height H 180 mm									
Insulation thickness 120 mm, Element length 1000 mm									
Tension barsShear force barsCompression elements ¹ ΔL_w [dB]									
(total number of equal									
number pos. und neg.)									
n	n Ø2 [mm] N Ø [mm] n name								
-	- 16 6 7								
-		10	10	4	HTE20 10				
-		4	10	4	HIE20	13			
- 0 4 16									
¹ Concret	¹ Concrete compression elements (CCE) in accordance with section A.2.5,								
HTE20 = concrete compression element HTE-Compact [®] 20									

Schöck lsokorb® with compression elements made of concrete or steel

Performance parameters

Annex C22

Reduction of impact sound pressure level

nsion bars Ø₂ [mm] 12	She (total n numbe 12 12 4 4	ear force bars number of equal er pos. und neg.) Ø [mm] 10 accordance with s	Comp n 12 7 7 4	e cover of tension ba ression elements ¹ Ø [mm] 12 A.2.4	ΔL _w [dB]
12	n 12 12 4 4 4	Ø [mm] 10	12 7 7 4	12	8 11
12	12 4 4	10	7 7 4	12	8 11
	4		7 4		11
	4		4		
pression element		accordance with		λ.2.4	
pression element	i <u>ts (SCE) in</u>	accordance with	section A	A.2.4	
okorb [®] with cor	mpressio	n elements mac	le of co	oncrete or steel	
	e parameters	e parameters		e parameters	

Page 61 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

D.1 Structural analysis

D.1.1 General

- EN 1992-1-1 and EN 1993-1-1 shall apply to design and structural analysis (in the joint)
- Earthquake design case according to EN 1998-1 with behavior factor:
 - q_a = 1.5 Connection with one connection line (application example: free cantilever balcony)
 - q_a = 1.0 Connection with more than one connection line (application example: balcony over corner, loggia)
 - q_a = 1.0 by transferring the seismic load with Schöck Isokorb[®] Type H
- Structural verification shall be performed for each individual case
- Type-tested design tables may be used

Determination of internal forces:

- Only with linear-elastic analysis
- Analysis with redistribution, plastic analysis and non-linear analysis may not be used
- The principles for the design of frameworks in accordance with EN 1992-1-1, section 5.6.4 shall be used
- Strut-and-tie models in accordance with Annex D3 to D5 with z = z_{strut-and-tie}
- Internal forces M_{Ed} and V_{Ed} shall be applied on the reference axis, see Fig. D.1 to Fig. D.16
- Shear reinforcement only receive tensile forces
- Variable moments and shear forces along the slab edges shall be taken into account (see section B.1.1)
- The shear force reinforcement required in the insulation joint does not determine the minimum slab thickness in accordance with EN 1992-1-1, section 9.3.2(1)

On-site vertical reinforcement on the adjacent surfaces facing the insulation of the components:

 The required vertical reinforcement results from the supporting and splitting tensile reinforcement, whereby at least a subsidiary structural edge reinforcement in accordance with section B.2.3 shall be provided

$$V = max \begin{cases} R \\ A+S \end{cases}$$

with:

- V on-site vertical reinforcement
- R subsidiary structural edge reinforcement in accordance with section B.2.3
- A supporting reinforcement
- S splitting reinforcement

Schöck lsokorb® with compression elements made of concrete or steel

Structural analysis General

A - supporting reinforcement

A supporting reinforcement is needed on the balcony side, if the number of the compression or tension elements is higher than the number of the shear force bars. The required supporting reinforcement (and subsidiary structural edge reinforcement) covers the entire height up to the tension chord of the connected component.

positive shear forces (directed downwards):

negative shear forces (directed upwards):

$$\begin{array}{ll} \mathsf{A} = \frac{\mathsf{V}_{Ed}}{\mathsf{f}_{yd}} \cdot \left(1 - \frac{\mathsf{n}_{Q-bar}(+)}{\mathsf{n}_{CE}}\right) \text{ with } \frac{\mathsf{n}_{Q-bar}(+)}{\mathsf{n}_{CE}} \leq 1 & \mathsf{A} = \frac{\mathsf{V}_{Ed}}{\mathsf{f}_{yd}} \cdot \left(1 - \frac{\mathsf{n}_{Q-bar}(-)}{\mathsf{n}_{ZS}}\right) \text{ with } \frac{\mathsf{n}_{Q-bar}(-)}{\mathsf{n}_{ZS}} \leq 1 \\ \text{with:} \\ \mathsf{A} & \text{required supporting reinforcement} \\ \mathsf{n}_{Q-bar} & \text{number of positive (+) or negative (-) shear force bars} \\ \mathsf{n}_{CE} & \text{number of compression elements} \\ \mathsf{n}_{ZS} & \text{number of tension elements} \\ \mathsf{V}_{Ed} & \text{total acting shear force} \end{array}$$

 \mathbf{n}_{a} , (\pm)

- S splitting reinforcement
 - 1. Balcony side:

$$Z_{Sd} = 0.25 \cdot D_{Ed} \left(1 - \frac{a}{2 \cdot e'}\right)$$
$$S_{B} = \frac{Z_{Sd}}{2 \cdot e}$$

with:

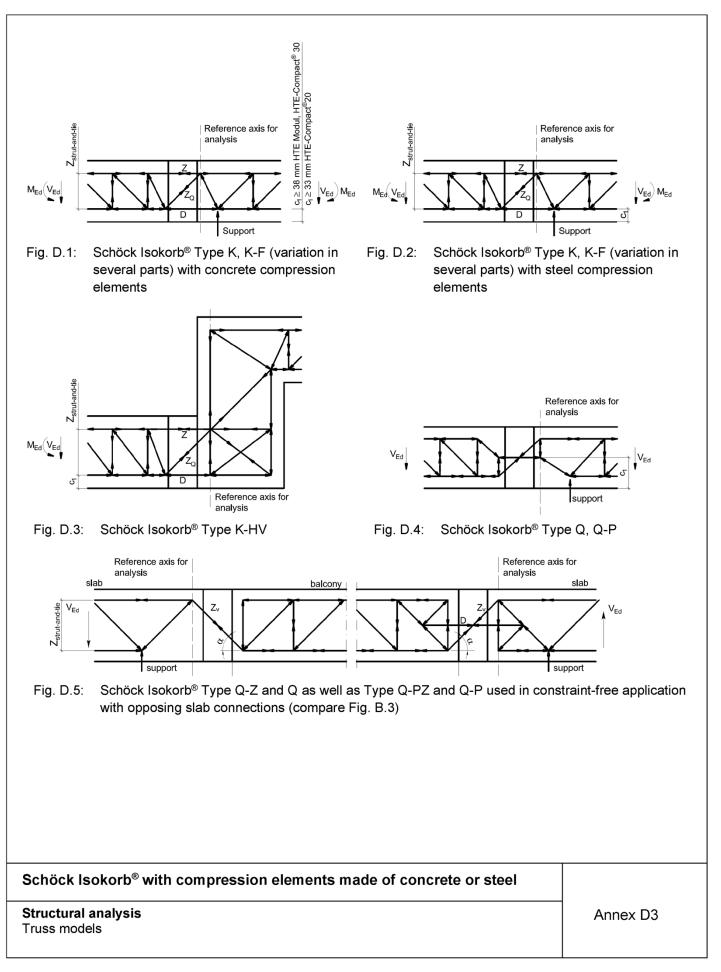
C

- resultant splitting tensile force Z_{Sd}
- D_{Ed} orthogonal and cantered compression force acting on the subarea in accordance with Annexes D3 to D5
- height of the subarea on which DEd is acting а
 - CCE: 20 mm for HTE-Compact® 20
 - 30 mm for HTE-Compact® 30 or HTE-Modul
 - SCE: height of the compression plate or diameter of the compressed head
 - distance of the compression element to the nearest edge; $e = \min\{c_1; h c_1\}$
- height of the thermal insulation element h
- edge distance of the load resultants (Annexes D3 to D5) C1
- required splitting reinforcement on the balcony side SB
- 2. Floor side:

e'

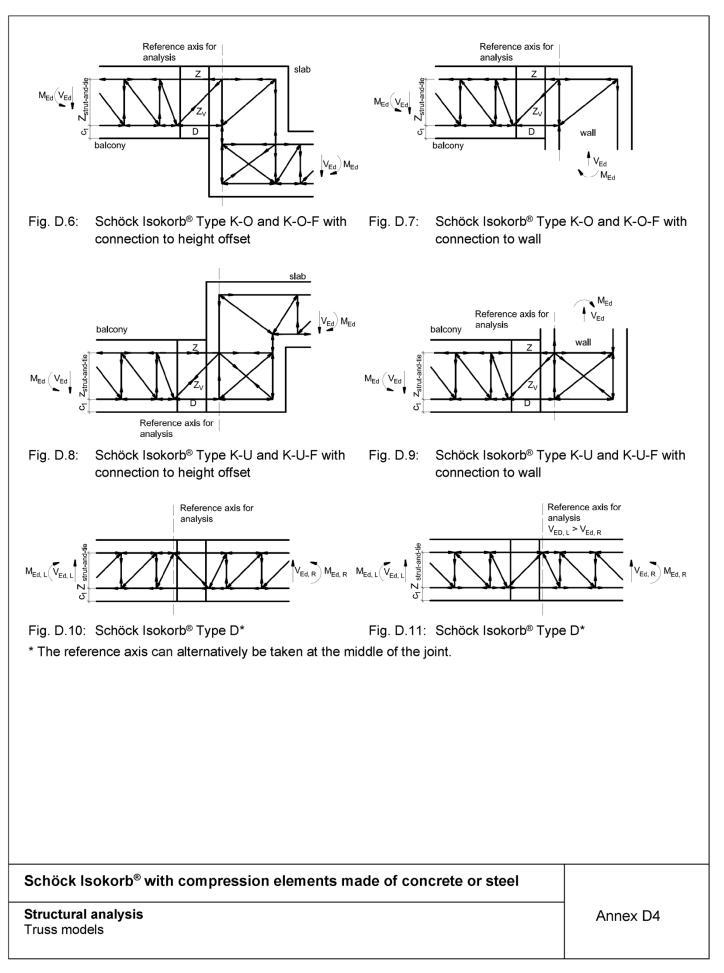
 $S_{D} = \begin{cases} 0 \text{ for direct support} \\ S_{B} \text{ for indirect support} \end{cases}$

with:

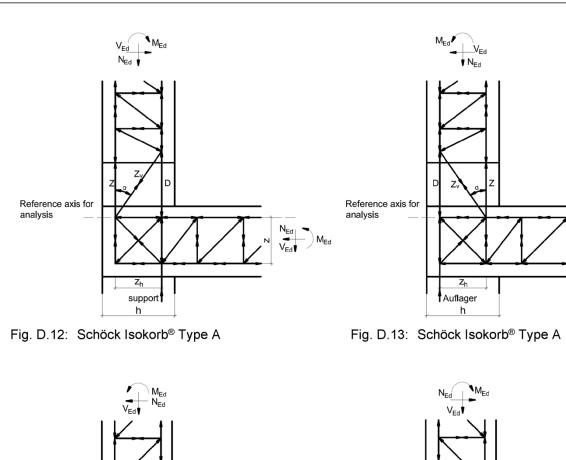

required splitting reinforcement on the slab side SD

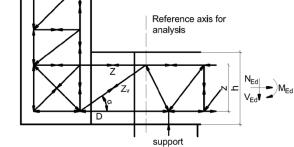
- If the shear force is pointing up (lifting) or the compression chord is above, and the tension chord is underneath, the statements for the on-site vertical reinforcement shall be analogously adapted for the contrary load transfer.
- Inclusion as a vertical reinforcement:
 - 1. Subsidiary structural edge reinforcement in accordance with section B.2.3
 - 2. Lattice girder with a maximum distance of 100 mm from the insulation joint
 - 3. Special stirrups (inclusion for splitting tensile reinforcement)
 - 4. Vertical legs of the shear force bars for Schöck Isokorb® Types K, K-F, K-O, K-U and K-HV, if the axial edge distance between shear force bars and the on-site connection reinforcement \leq 20 mm

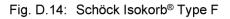
Structural analysis General


Page 63 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 64 of European Technical Assessment ETA-17/0261 of 2 January 2025






Page 65 of European Technical Assessment ETA-17/0261 of 2 January 2025

English translation prepared by DIBt

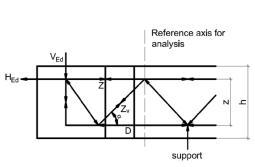


Fig. D.16: Schöck Isokorb® Type O

Schöck Isokorb® with compression elements made of concrete or steel

Structural analysis Truss models Annex D5

Reference axis for analysis

support

Fig. D.15: Schöck Isokorb® Type F

N_{Ed} V_{Ed}M

Z195369.24

D.1.2 Ultimate limit state

D.1.2.1 Verification of tension bars and shear force bars

- Verification in accordance with EN 1993-1-4 with design values in accordance with Table C.
- Load bearing capacity of the welded joint between reinforcing steel and stainless reinforcing steel or round steel does not need to be performed separately

D.1.2.2 Verification of horizontal bars

The design values for the horizontal bars according to C.1.1.5 shall apply without further proof.

D.1.2.3 Verification of steel compression elements SCE

- The design values that can be applied for verification are given in Table C.14
- Compression elements with welded-on compression plates or compressed heads: Introduction of the compressive stresses into the concrete as a partial surface load in accordance with EN 1992-1-1, section 6.7 shall be verified. For compressed heads: b₁ = d₁ = Ø_K Vertical reinforcement in accordance with section D.1.1 shall be observed.
- Superimposition of adjacent load distribution surfaces shall be taken into consideration
- It shall be verified that the occurring tensile forces can be transferred
- Tensile force transmission for compression elements with welded-on compression plates according to Fig. A.34 and Fig. A.39: design value N_{Rd,c} of tensile force in accordance with Table C.15

D.1.2.4 Verification of concrete compression elements CCE

D.1.2.4.1 Concrete compression elements: HTE module

- Design value D_{Rd} in accordance with section C.1.2 and in consideration of section C.1.2.2
- These design value also applies conservatively to concrete compression elements HTE-Compact[®] 30

D.1.2.4.2 Concrete compression elements: HTE-Compact® 20 and HTE-Compact® 30

 Design value for the compression element force in accordance with section C.1.2 and in consideration of section C.1.2.3

D.1.2.5 Shear force resistance in the area of the insulation joint

- Shear force resistance of the connecting slabs shall be carried out in consideration of EN 1992-1-1, section 6.2
- The required verification of the mandrel diameter can be omitted if the following conditions are observed:
 - 1. Mandrel diameter specifications given in section A.2.2
 - The shear force bar axis spacing on average and to the free edge or to the expansion joint is
 ≥ 100 mm (see section A.2).
- Centre or edge distance < 100 mm: detailed calculation in accordance with section C.1.1.2 shall be observed.

Schöck lsokorb[®] with compression elements made of concrete or steel

Structural analysis Ultimate limit state

D.1.2.6 Verification of the fatigue due to temperature difference

Verification by limitation of the joint spacing in the external structural component in accordance with Table B.1

D.1.2.7 Provisions of the verifications in the load introduction area of the concrete components

- Shear force load capacity of the undisturbed slabs in accordance with EN 1992-1-1, section 6.2
- A shear force distributed evenly across the concrete compression area shall be taken as a basis, especially for the design value of the shear force load bearing capacity of the slabs without shear force reinforcement. Therefore, the elements shall be installed with uniform spacing.
- The on-site stirrup reinforcement in the anchorage area (edge beam) when using tension and shear bars with anchor head according to Annexes B8 to B10 shall be designed as follows. A stirrup shall be arranged at least between two and next to the external tension or shear bars. The cross-section of the stirrups shall be designed taking into account the truss models in Annexes D3 to D5 for the total acting longitudinal force of the tension and shear force bars and may be taken into account for the static checks of the edge beam.

Schöck lsokorb[®] with compression elements made of concrete or steel

Structural analysis Ultimate limit state

D.1.2.8 Anchorage lengths and overlap joints of the bars leading through the thermal insulation joint

- Only ribbed steel can be taken into account for anchorage lengths and overlap joints
- The tension bars shall be lapped to the tensile bars of the adjacent slabs
- With use of tension bars with diameter combination (see section A.2.1) the increase in the overlap length I∆₀ in accordance with Table A.1 and Table A.2 shall be taken into account
- Anchorage of the shear force bars in the slabs in accordance with section A.2.2, insofar as higher values are not yielded in accordance with EN 1992-1-1, equation (8.10).

For tensile stresses $f_{yd} > 435 \text{ N/mm}^2$ the factor $\frac{f_{yd}}{435}$ shall be observed for the anchorage lengths.

For welded shear force bars, the position of the weld shall be positioned in such a way that the stress is \leq 435 N/mm² at this point, assuming a linear stress drop.

The unrolled length of the centre line of the bar is to be used for the anchoring length. Using shear force bars with diameter combination, the respective surface area of the bars for the anchoring length is to be observed.

- Anchoring of shear force bars shown in Fig. A.29 to Fig. A.31 without any further calculation. On the side of the plate with bent bar end or anchor head a stirrup ≥ 8 mm per shear force bar is to be arranged (see Fig. B.18 to Fig. B.20) insofar as higher values are not yielded in accordance with section D.1.1. On-site reinforcement that goes beyond the statically required reinforcement can be included in the calculation.
- Anchorage of the horizontal bars in accordance with section A.2.3, insofar as higher values are not yielded in accordance with EN 1992-1-1, equation (8.10).
- In cases in which shear force bars and compression members are not placed on a plane, the anchorage length for shear force bars shall also be determined in the compression zone as in the tensile zone
- Compression bars shall be anchored in the slabs with at least Ibd in accordance with EN 1992-1-1.

Shear reinforcement in accordance with EN 1992-1-1, section 8.7.4, shall be placed in the overlap area of the bars at an axial distance > 20 mm and anchored to the section edge to resist the arising transverse tensile forces in addition to the shear reinforcement in accordance with EN 1992-1-1, section 8.7.4.1

Grading of the tensile reinforcement in the areas of the Schöck Isokorb® shall not be permitted.

Slab connections exclusively transfer shear forces:

- The tensile reinforcement of the slab to be connected shall be anchored in the compression zone on the frontal side with hooks
- Alternatively, stirrups on every shear force bar or lattice girders, with use of lattice girders, the tensile reinforcement shall lie over the lower chords of the lattice girders (see also B.2.3).
- The version of the shear force bar in bent form shall be possible, if the design details specified in section A.2.2 are implemented

Schöck lsokorb[®] with compression elements made of concrete or steel

Structural analysis Anchoring and overlap length

D.1.3 Serviceability limit state

D.1.3.1 Control of cracking

- EN 1992-1-1 section 7.3 applies.
- No additional verification is required on the front faces of the joints or in the load introduction area if the provisions of this European technical assessment are complied with.

D.1.3.2 Deflection control

In the calculation of the vertical deformations, the following influencing factors shall be taken into account:

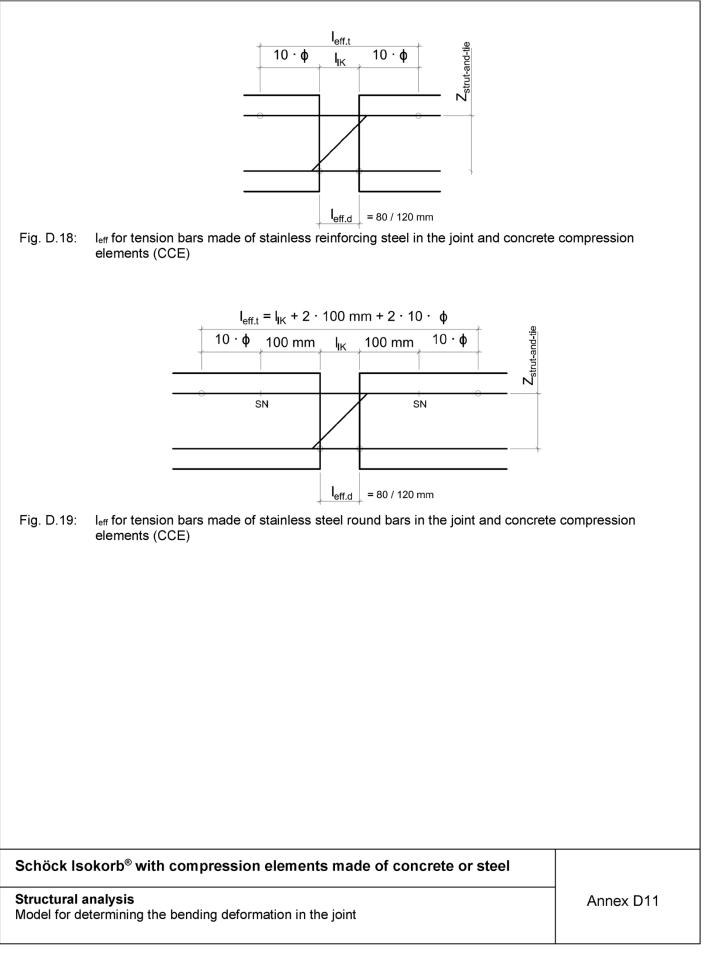
- elastic deformations of the load bearing thermal insulation element as described below
- elastic deformation of the adjacent slab concrete
- thermal expansions

Verification of the deflections:

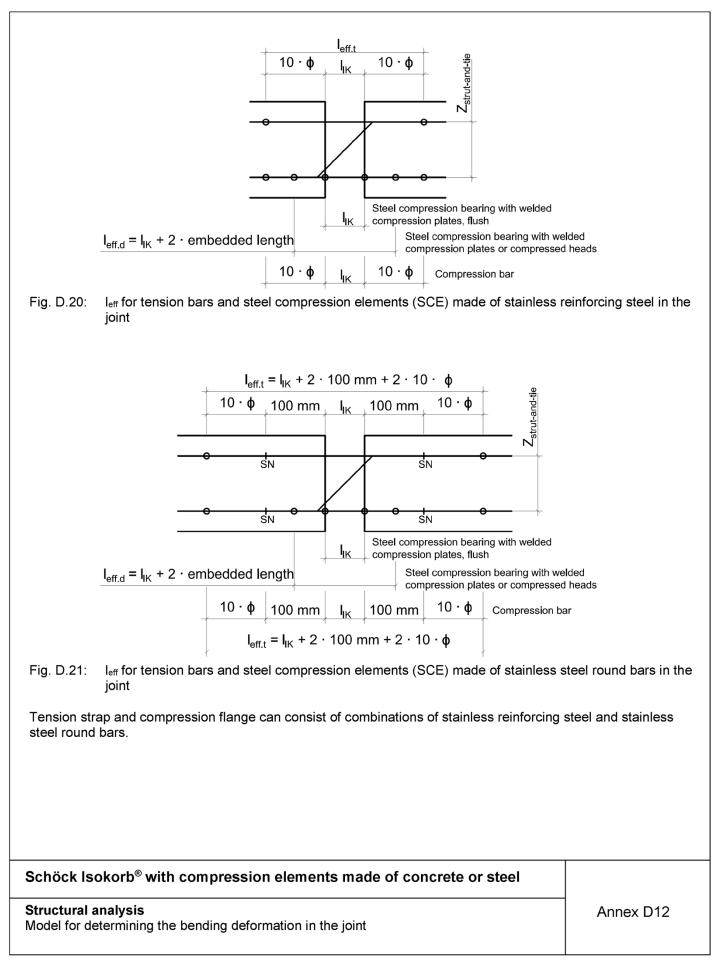
- quasi-continuous combination in accordance with Annexes D10 to D12
- model for determining the bending deformation in the joint in accordance with Annexes D10 to D12
- calculation of the elastic deformations of the tension bars depending on the yield strengths that can be applied (Table C.)

Schöck lsokorb[®] with compression elements made of concrete or steel

Structural analysis Serviceability limit state


Page 70 of European Technical Assessment ETA-17/0261 of 2 January 2025

[∦] ig. D.17: Model for determining the ben	1	
V _{Ed}		ΔI _d
M _{Ed}	$L_{eff.t} \rightarrow \frac{\Delta l_t}{\Delta l_t}$	pint
	Reference axis for analysis	
angle of rotation in the joint:	$\tan \alpha_{Fuge} = \frac{\Delta I_t - \Delta I_d}{z}$	
Steel compression bearings (SCE):	$\Delta I_d = \varepsilon_d \cdot I_{eff.d} = \frac{\sigma_d}{E_d} \cdot I_{eff.d}$ with $E_d = 160.000 \text{ N/mm}^2$ for stainless reinford with $E_d = 200.000 \text{ N/mm}^2$ for stainless round s	
Adjacent materials: Compression flange:	with E_d = 45.000 N/mm ² $\Delta I_{d2,GZG}$ = -0,275 mm ΔI_d = ΔI_{d1} + $\Delta I_{d2,GZG}$	
Concrete compression bearings (CCE):	$\Delta I_{d1} = \varepsilon_{d} \cdot I_{eff.d} = \frac{\sigma_{d}}{\varepsilon_{d}} \cdot I_{eff.d}$ with $\varepsilon_{d} = 45,000$ N/mm ²	
	$\Delta I_t = \epsilon_t \cdot I_{eff.t} = \frac{\sigma_t}{E_t} \cdot I_{eff.t}$ with E _t = 160.000 N/mm ² for stainless reinforc with E _t = 200.000 N/mm ² for stainless round s	


Page 71 of European Technical Assessment ETA-17/0261 of 2 January 2025

Page 72 of European Technical Assessment ETA-17/0261 of 2 January 2025

